Extremal Trees for the Geometric-Arithmetic Index with the Maximum Degree

IF 1 Q1 MATHEMATICS
A. Divya, A. Manimaran
{"title":"Extremal Trees for the Geometric-Arithmetic Index with the Maximum Degree","authors":"A. Divya, A. Manimaran","doi":"10.47443/dml.2021.s207","DOIUrl":null,"url":null,"abstract":"Abstract For a graph G, the geometric-arithmetic index of G, denoted by GA(G), is defined as the sum of the quantities 2 √ dx × dy/(dx + dy) over all edges xy ∈ E(G). Here, dx indicates the vertex degree of x. For every tree T of order n ≥ 3, Vukičević and Furtula [J. Math. Chem. 46 (2009) 1369–1376] demonstrated that GA(T ) ≤ 4 √ 2 3 + (n − 3). This result is extended in the present paper. Particularly, for any tree T of order n ≥ 5 and maximum degree ∆, it is proved that","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.s207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract For a graph G, the geometric-arithmetic index of G, denoted by GA(G), is defined as the sum of the quantities 2 √ dx × dy/(dx + dy) over all edges xy ∈ E(G). Here, dx indicates the vertex degree of x. For every tree T of order n ≥ 3, Vukičević and Furtula [J. Math. Chem. 46 (2009) 1369–1376] demonstrated that GA(T ) ≤ 4 √ 2 3 + (n − 3). This result is extended in the present paper. Particularly, for any tree T of order n ≥ 5 and maximum degree ∆, it is proved that
极大次几何算术索引的极值树
摘要对于图G,用GA(G)表示的G的几何算术指数被定义为所有边xy∈E(G)上的量2√dx×dy/(dx+dy)的和。这里,dx表示x的顶点度。对于n≥3阶的每棵树T,Vukičević和Furtula[J.Math.Chem.46(2009)1369–1376]证明了GA(T)≤4√2 3+(n−3)。这一结果在本文中得到了推广。特别地,对于n≥5阶且最大阶为∆的任意树T,证明了
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信