On the sequence $n! \bmod p$

IF 1.3 2区 数学 Q1 MATHEMATICS
A. Grebénnikov, A. Sagdeev, A. Semchankau, A. Vasilevskii
{"title":"On the sequence $n! \\bmod p$","authors":"A. Grebénnikov, A. Sagdeev, A. Semchankau, A. Vasilevskii","doi":"10.4171/rmi/1422","DOIUrl":null,"url":null,"abstract":"We prove, that the sequence $1!, 2!, 3!, \\dots$ produces at least $(\\sqrt{2} + o(1))\\sqrt{p}$ distinct residues modulo prime $p$. Moreover, factorials on an interval $\\mathcal{I} \\subseteq \\{0, 1, \\dots, p - 1\\}$ of length $N>p^{7/8 + \\varepsilon}$ produce at least $(1 + o(1))\\sqrt{p}$ distinct residues modulo $p$. As a corollary, we prove that every non-zero residue class can be expressed as a product of seven factorials $n_1! \\dots n_7!$ modulo $p$, where $n_i = O(p^{6/7+\\varepsilon})$ for all $i=1,\\dots,7$, which provides a polynomial improvement upon the preceding results.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1422","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove, that the sequence $1!, 2!, 3!, \dots$ produces at least $(\sqrt{2} + o(1))\sqrt{p}$ distinct residues modulo prime $p$. Moreover, factorials on an interval $\mathcal{I} \subseteq \{0, 1, \dots, p - 1\}$ of length $N>p^{7/8 + \varepsilon}$ produce at least $(1 + o(1))\sqrt{p}$ distinct residues modulo $p$. As a corollary, we prove that every non-zero residue class can be expressed as a product of seven factorials $n_1! \dots n_7!$ modulo $p$, where $n_i = O(p^{6/7+\varepsilon})$ for all $i=1,\dots,7$, which provides a polynomial improvement upon the preceding results.
序列$n!\ bmod p $
我们证明了序列$1!, 2!, 3!, \dots$至少产生$(\sqrt{2} + o(1))\sqrt{p}$个不同的残模素$p$。此外,在长度为$N>p^{7/8 + \varepsilon}$的区间$\mathcal{I} \subseteq \{0, 1, \dots, p - 1\}$上的阶乘产生至少$(1 + o(1))\sqrt{p}$个不同的残模$p$。作为推论,我们证明了每一个非零剩余类都可以表示为七个阶乘$n_1! \dots n_7!$模$p$的乘积,其中$n_i = O(p^{6/7+\varepsilon})$对于所有$i=1,\dots,7$,这是对前面结果的多项式改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信