Spatial Asymptotic Profiles of Solutions to the Navier-Stokes System in a Rotating Frame with Fast Decaying Data

IF 0.6 4区 数学 Q3 MATHEMATICS
R. Farwig, R. Schulz, Y. Taniuchi
{"title":"Spatial Asymptotic Profiles of Solutions to the Navier-Stokes System in a Rotating Frame with Fast Decaying Data","authors":"R. Farwig, R. Schulz, Y. Taniuchi","doi":"10.14492/hokmj/1537948828","DOIUrl":null,"url":null,"abstract":"The nonstationary Navier-Stokes system for a viscous, incompressible fluid influenced by a Coriolis force in the whole space R3 is considered at large distances. The solvability of the corresponding integral equations of these equations in weighted L∞-spaces is established. Furthermore, the leading terms of the asymptotic profile of the solution at fixed time t > 0 for |x| > t and far from the axis of rotation are investigated.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14492/hokmj/1537948828","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/1537948828","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The nonstationary Navier-Stokes system for a viscous, incompressible fluid influenced by a Coriolis force in the whole space R3 is considered at large distances. The solvability of the corresponding integral equations of these equations in weighted L∞-spaces is established. Furthermore, the leading terms of the asymptotic profile of the solution at fixed time t > 0 for |x| > t and far from the axis of rotation are investigated.
具有快速衰减数据的旋转坐标系中Navier-Stokes系统解的空间渐近轮廓
考虑在整个空间R3中受科里奥利力影响的粘性不可压缩流体的非平稳Navier-Stokes系统。建立了这些方程的相应积分方程在加权L∞-空间中的可解性。此外,还研究了在固定时间t>0,|x|>t和远离旋转轴的解的渐近轮廓的前导项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信