{"title":"On the local time of Gaussian and Lévy processes","authors":"Zineb Boudebane, Anis Rezgui","doi":"10.1515/rose-2023-2017","DOIUrl":null,"url":null,"abstract":"Abstract The local time (LT) of a given stochastic process { X t : t ≥ 0 } \\{X_{t}:t\\geq 0\\} is defined informally as L X ( t , x ) = ∫ 0 t δ x ( X s ) d s , L_{X}(t,x)=\\int_{0}^{t}\\delta_{x}(X_{s})\\,ds, where δ x \\delta_{x} denotes the Dirac function; actually, it counts the duration of the process’s stay at 𝑥 up to time 𝑡. Using an approximation approach, we study the existence and the regularity of the LT process for two kinds of stochastic processes. The first type is the stochastic process defined by the indefinite Wiener integral X t := ∫ 0 t f ( u ) d B u X_{t}:=\\int_{0}^{t}f(u)\\,dB_{u} for a given deterministic function f ∈ L 2 ( [ 0 , + ∞ [ ) f\\in L^{2}([0,+\\infty[) , and secondly, for Lévy type processes, i.e. ones that are stationary and with independent increments.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The local time (LT) of a given stochastic process { X t : t ≥ 0 } \{X_{t}:t\geq 0\} is defined informally as L X ( t , x ) = ∫ 0 t δ x ( X s ) d s , L_{X}(t,x)=\int_{0}^{t}\delta_{x}(X_{s})\,ds, where δ x \delta_{x} denotes the Dirac function; actually, it counts the duration of the process’s stay at 𝑥 up to time 𝑡. Using an approximation approach, we study the existence and the regularity of the LT process for two kinds of stochastic processes. The first type is the stochastic process defined by the indefinite Wiener integral X t := ∫ 0 t f ( u ) d B u X_{t}:=\int_{0}^{t}f(u)\,dB_{u} for a given deterministic function f ∈ L 2 ( [ 0 , + ∞ [ ) f\in L^{2}([0,+\infty[) , and secondly, for Lévy type processes, i.e. ones that are stationary and with independent increments.
摘要给定随机过程{X t:t≥0}\{X_{t}:t\geq 0\}的局部时间(LT)被非正式地定义为L X≠(t, X)=∫0 t δ X≠(X s)∑ds, L_{X}(t, X)=\int_{0}^{t}\delta_{X}(X_{s})\,ds,其中δ X \delta_{X}表示Dirac函数;实际上,它会一直计算流程在端点处停留的时间𝑡。用近似方法研究了两类随机过程的LT过程的存在性和正则性。第一类是随机过程,定义为不定维纳积分X t:=∫0 t f _ (u) dB u X_{t}:=\int_{0}^{t}f(u)\,对于给定的确定性函数f∈l2([0,+∞[)f\in L^{2}([0,+\infty[)),dB_{u};第二类是l型过程,即平稳且具有独立增量的过程。