Zeros of Primitive Characters

IF 0.8 4区 数学
Wenyang Wang null, N. Du
{"title":"Zeros of Primitive Characters","authors":"Wenyang Wang null, N. Du","doi":"10.4208/jms.v55n1.22.05","DOIUrl":null,"url":null,"abstract":". Let G be a finite group. An irreducible character χ of G is said to be primitive if χ 6 = ϑ G for any character ϑ of a proper subgroup of G . In this paper, we consider about the zeros of primitive characters. Denote by Irr pri ( G ) the set of all irreducible primitive characters of G . We proved that if g ∈ G and the order of gG ′ in the factor group G / G ′ does not divide | Irr pri ( G ) | , then there exists ϕ ∈ Irr pri ( G ) such that ϕ ( g )= 0.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v55n1.22.05","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Let G be a finite group. An irreducible character χ of G is said to be primitive if χ 6 = ϑ G for any character ϑ of a proper subgroup of G . In this paper, we consider about the zeros of primitive characters. Denote by Irr pri ( G ) the set of all irreducible primitive characters of G . We proved that if g ∈ G and the order of gG ′ in the factor group G / G ′ does not divide | Irr pri ( G ) | , then there exists ϕ ∈ Irr pri ( G ) such that ϕ ( g )= 0.
原始字符的零
.设G是一个有限群。G的一个不可约特征χ被认为是原始的,如果对于G的任何一个适当子群的特征χ。在本文中,我们考虑了原始字符的零。用Irr-pri(G)表示G的所有不可约原始特征的集合。我们证明了如果g∈g,并且因子群g/g′中的gG′的阶不除|Irr-pri(g)|,则存在Γ∈Irr-pri(g)使得Γ(g)=0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信