Li Wencong, Li Siyuan, Zhang Zhe, Bai Shuzhan, Li Guoxiang, Ma Kongrong, Qu Yao
{"title":"Performance analysis of a natural gas-fueled 1 kW solid oxide fuel cell-combined heat and power system with off-gas recirculation of anode and cathode","authors":"Li Wencong, Li Siyuan, Zhang Zhe, Bai Shuzhan, Li Guoxiang, Ma Kongrong, Qu Yao","doi":"10.1002/fuce.202200099","DOIUrl":null,"url":null,"abstract":"<p>Both anode off-gas recirculation (AOGR) and cathode off-gas recirculation (COGR) can increase the performance of solid oxide fuel cell-combined heat and power (SOFC-CHP) systems on their own, however, they both have unavoidable drawbacks. Thus, the combined effect of both on the system is worth investigating. The essential challenge is to figure out what the best AOGR and COGR ratios are under the combined situation. In this paper, the effects of varied AOGR ratios and COGR ratios on the system performance were investigated. A model of a 1 kW natural gas-fueled SOFC-CHP system was constructed which uses Cycle-Tempo software. It is demonstrated that moderate AOGR can improve the net electrical efficiency, but too much AOGR will reduce the H<sub>2</sub> concentration at the anode inlet and prevent the stack from working properly; moderate COGR can improve the thermal efficiency, but too much COGR can lead to large changes in current density variation and cause drastic changes in current, which affects the system and external electrical equipment. While, combining AOGR with COGR can improve both the net electrical and thermal efficiency, which results in higher total efficiency. As a result, the combined configuration of an AOGR ratio of 0.4 and a COGR ratio of 0.4 is recommended. In this scenario, the net electrical efficiency of the system is 47.38%, the thermal efficiency is 28.98%, the total efficiency is 76.37%, and the actual fuel utilization rate is 0.834.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200099","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Both anode off-gas recirculation (AOGR) and cathode off-gas recirculation (COGR) can increase the performance of solid oxide fuel cell-combined heat and power (SOFC-CHP) systems on their own, however, they both have unavoidable drawbacks. Thus, the combined effect of both on the system is worth investigating. The essential challenge is to figure out what the best AOGR and COGR ratios are under the combined situation. In this paper, the effects of varied AOGR ratios and COGR ratios on the system performance were investigated. A model of a 1 kW natural gas-fueled SOFC-CHP system was constructed which uses Cycle-Tempo software. It is demonstrated that moderate AOGR can improve the net electrical efficiency, but too much AOGR will reduce the H2 concentration at the anode inlet and prevent the stack from working properly; moderate COGR can improve the thermal efficiency, but too much COGR can lead to large changes in current density variation and cause drastic changes in current, which affects the system and external electrical equipment. While, combining AOGR with COGR can improve both the net electrical and thermal efficiency, which results in higher total efficiency. As a result, the combined configuration of an AOGR ratio of 0.4 and a COGR ratio of 0.4 is recommended. In this scenario, the net electrical efficiency of the system is 47.38%, the thermal efficiency is 28.98%, the total efficiency is 76.37%, and the actual fuel utilization rate is 0.834.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.