Busting muscle myths

Q4 Biochemistry, Genetics and Molecular Biology
Biochemist Pub Date : 2022-12-22 DOI:10.1042/bio_2022_142
J. Bagley, A. Galpin, Kevin A. Murach
{"title":"Busting muscle myths","authors":"J. Bagley, A. Galpin, Kevin A. Murach","doi":"10.1042/bio_2022_142","DOIUrl":null,"url":null,"abstract":"Skeletal muscle is the most abundant tissue in the human body. Known for its primary role in movement, muscle also plays important roles in regulating metabolism, maintaining body temperature and providing large stores of protein, carbohydrates and fats. Muscle cells (known as ‘muscle fibres’) can rapidly adapt to exercise or disuse by changing size and function. Many myths and misconceptions have proliferated through the years related to skeletal muscle, exercise training and human performance. Some of these myths have spanned centuries, but more recent research has passed doubt on these stories. In this article, we address common misconceptions, including the ‘go big or go home’ and ‘if you don’t use it, you lose it’ approaches to training. Clarification of these myths could positively impact individual exercise programs/therapies and their outcomes.","PeriodicalId":35334,"journal":{"name":"Biochemist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/bio_2022_142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Skeletal muscle is the most abundant tissue in the human body. Known for its primary role in movement, muscle also plays important roles in regulating metabolism, maintaining body temperature and providing large stores of protein, carbohydrates and fats. Muscle cells (known as ‘muscle fibres’) can rapidly adapt to exercise or disuse by changing size and function. Many myths and misconceptions have proliferated through the years related to skeletal muscle, exercise training and human performance. Some of these myths have spanned centuries, but more recent research has passed doubt on these stories. In this article, we address common misconceptions, including the ‘go big or go home’ and ‘if you don’t use it, you lose it’ approaches to training. Clarification of these myths could positively impact individual exercise programs/therapies and their outcomes.
肌肉断裂神话
骨骼肌是人体内最丰富的组织。肌肉以其在运动中的主要作用而闻名,它在调节新陈代谢、维持体温和提供大量蛋白质、碳水化合物和脂肪方面也发挥着重要作用。肌肉细胞(被称为“肌肉纤维”)可以通过改变大小和功能快速适应运动或废弃。多年来,许多与骨骼肌、运动训练和人类表现有关的神话和误解层出不穷。其中一些神话已经跨越了几个世纪,但最近的研究对这些故事提出了质疑。在这篇文章中,我们解决了常见的误解,包括“要么做大,要么回家”和“如果你不使用它,你就会失去它”的训练方法。澄清这些误解可能会对个人锻炼计划/疗法及其结果产生积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemist
Biochemist Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.20
自引率
0.00%
发文量
41
期刊介绍: This lively and eclectic magazine for all life scientists appears six times a year. Its quirky style and astute selection of serious and humorous articles ensures that the magazine"s appeal is by no means restricted to that of the avid biochemist. Specially commissioned articles from leading scientists bring a popular science perspective direct to you! Forthcoming themes include: RNAi, Money in Science, Extremophiles, Biosystems and Mathematical Modelling, Renascence of Mitochondria, Prions & Protein factors, Imaging live cells and Model organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信