Homology Representations of Compactified Configurations on Graphs Applied to 𝓜2,n

Pub Date : 2023-05-22 DOI:10.1080/10586458.2023.2209749
C. Bibby, M. Chan, Nir Gadish, Claudia He Yun
{"title":"Homology Representations of Compactified Configurations on Graphs Applied to 𝓜2,n","authors":"C. Bibby, M. Chan, Nir Gadish, Claudia He Yun","doi":"10.1080/10586458.2023.2209749","DOIUrl":null,"url":null,"abstract":". We obtain new calculations of the top weight rational cohomology of the moduli spaces M 2 ,n , equivalently the rational homology of the tropical moduli spaces ∆ 2 ,n , as a representation of S n . These calculations are achieved fully for all n ≤ 10, and partially—for specific irreducible representations of S n —for n ≤ 22. We also present conjectures, verified up to n = 22, for the multiplicities of the irreducible representations std n and std n ⊗ sgn n . We achieve our calculations via a comparison with the homology of compactified configuration spaces of graphs. These homology groups are equipped with commuting actions of a symmetric group and the outer automorphism group of a free group. In this paper, we con-struct an efficient free resolution for these homology representations. Using the Peter-Weyl Theorem for symmetric groups, we consider irreducible representations individually, vastly simplifying the calculation of these homology representations from the free resolution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2023.2209749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. We obtain new calculations of the top weight rational cohomology of the moduli spaces M 2 ,n , equivalently the rational homology of the tropical moduli spaces ∆ 2 ,n , as a representation of S n . These calculations are achieved fully for all n ≤ 10, and partially—for specific irreducible representations of S n —for n ≤ 22. We also present conjectures, verified up to n = 22, for the multiplicities of the irreducible representations std n and std n ⊗ sgn n . We achieve our calculations via a comparison with the homology of compactified configuration spaces of graphs. These homology groups are equipped with commuting actions of a symmetric group and the outer automorphism group of a free group. In this paper, we con-struct an efficient free resolution for these homology representations. Using the Peter-Weyl Theorem for symmetric groups, we consider irreducible representations individually, vastly simplifying the calculation of these homology representations from the free resolution.
分享
查看原文
图上紧化构形的同调表示应用于𝓜2,n
.我们获得了模空间M2,n的顶权有理上同调的新计算,等价于热带模空间∆2,n的有理同调,作为S n的表示。对于所有n≤10,这些计算都是完全实现的,对于S n的特定不可约表示,对于n≤22,这些计算是部分实现的。我们还提出了关于不可约表示std n和std n⊗sgn n的乘法性的猜想,验证到n=22。我们通过与图的紧致配置空间的同源性进行比较来实现我们的计算。这些同调群具有对称群和自由群的外自同构群的交换作用。在本文中,我们为这些同源性表示构造了一个有效的自由分辨率。使用对称群的Peter Weyl定理,我们分别考虑不可约表示,极大地简化了从自由分辨率计算这些同调表示的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信