Asymptotic behavior of blowup solutions for Henon type parabolic equations with exponential nonlinearity

Pub Date : 2023-07-09 DOI:10.58997/ejde.2022.42
Caihong Chang, Zhengce Zhang
{"title":"Asymptotic behavior of blowup solutions for Henon type parabolic equations with exponential nonlinearity","authors":"Caihong Chang, Zhengce Zhang","doi":"10.58997/ejde.2022.42","DOIUrl":null,"url":null,"abstract":"This article concerns the blow up behavior for the Henon type parabolic equation withexponential nonlinearity, $$ u_t=\\Delta u+|x|^{\\sigma}e^u\\quad \\text{in } B_R\\times \\mathbb{R}_+, $$ where \\(\\sigma\\geq 0\\) and \\(B_R=\\{x\\in\\mathbb{R}^N: |x|<R\\}\\).We consider all cases in which blowup of solutions occurs, i.e. \\(N\\geq 10+4\\sigma\\).Grow up rates are established by a certain matching of different asymptotic behaviorsin the inner region (near the singularity) and the outer region (close to the boundary).For the cases \\(N>10+4\\sigma\\) and \\(N=10+4\\sigma\\), the asymptotic expansions of stationary solutions have different forms, so two cases are discussed separately. Moreover, different inner region widths in two cases are also obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2022.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article concerns the blow up behavior for the Henon type parabolic equation withexponential nonlinearity, $$ u_t=\Delta u+|x|^{\sigma}e^u\quad \text{in } B_R\times \mathbb{R}_+, $$ where \(\sigma\geq 0\) and \(B_R=\{x\in\mathbb{R}^N: |x|10+4\sigma\) and \(N=10+4\sigma\), the asymptotic expansions of stationary solutions have different forms, so two cases are discussed separately. Moreover, different inner region widths in two cases are also obtained.
分享
查看原文
具有指数非线性的Henon型抛物型方程爆破解的渐近性质
本文讨论了具有指数非线性的Henon型抛物方程$$ u_t=\Delta u+|x|^{\sigma}e^u\quad \text{in } B_R\times \mathbb{R}_+, $$的爆破行为,其中\(\sigma\geq 0\)和\(B_R=\{x\in\mathbb{R}^N: |x|10+4\sigma\)、\(N=10+4\sigma\)的平稳解的渐近展开形式不同,因此分别讨论了两种情况。此外,还得到了两种情况下不同的内区域宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信