Pointwise ergodic theorems for non-conventional bilinear polynomial averages

IF 5.7 1区 数学 Q1 MATHEMATICS
Ben Krause, Mariusz Mirek, T. Tao
{"title":"Pointwise ergodic theorems for non-conventional bilinear polynomial averages","authors":"Ben Krause, Mariusz Mirek, T. Tao","doi":"10.4007/annals.2022.195.3.4","DOIUrl":null,"url":null,"abstract":"We establish convergence in norm and pointwise almost everywhere for the non-conventional (in the sense of Furstenberg) bilinear polynomial ergodic averages \\[ A_N(f,g)(x) := \\frac{1}{N} \\sum_{n =1}^N f(T^nx) g(T^{P(n)}x)\\] as $N \\to \\infty$, where $T \\colon X \\to X$ is a measure-preserving transformation of a $\\sigma$-finite measure space $(X,\\mu)$, $P(\\mathrm{n}) \\in \\mathbb Z[\\mathrm{n}]$ is a polynomial of degree $d \\geq 2$, and $f \\in L^{p_1}(X), \\ g \\in L^{p_2}(X)$ for some $p_1,p_2 > 1$ with $\\frac{1}{p_1} + \\frac{1}{p_2} \\leq 1$. We also establish an $r$-variational inequality for these averages (at lacunary scales) in the optimal range $r > 2$. We are also able to ``break duality'' by handling some ranges of exponents $p_1,p_2$ with $\\frac{1}{p_1}+\\frac{1}{p_2} > 1$, at the cost of increasing $r$ slightly. \nThis gives an affirmative answer to Problem 11 from Frantzikinakis' open problems survey for the Furstenberg--Weiss averages (with $P(\\mathrm{n})=\\mathrm{n}^2$), which is a bilinear variant of Question 9 considered by Bergelson in his survey on Ergodic Ramsey Theory from 1996. Our methods combine techniques from harmonic analysis with the recent inverse theorems of Peluse and Prendiville in additive combinatorics. At large scales, the harmonic analysis of the adelic integers $\\mathbb A_{\\mathbb Z}$ also plays a role.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2022.195.3.4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

Abstract

We establish convergence in norm and pointwise almost everywhere for the non-conventional (in the sense of Furstenberg) bilinear polynomial ergodic averages \[ A_N(f,g)(x) := \frac{1}{N} \sum_{n =1}^N f(T^nx) g(T^{P(n)}x)\] as $N \to \infty$, where $T \colon X \to X$ is a measure-preserving transformation of a $\sigma$-finite measure space $(X,\mu)$, $P(\mathrm{n}) \in \mathbb Z[\mathrm{n}]$ is a polynomial of degree $d \geq 2$, and $f \in L^{p_1}(X), \ g \in L^{p_2}(X)$ for some $p_1,p_2 > 1$ with $\frac{1}{p_1} + \frac{1}{p_2} \leq 1$. We also establish an $r$-variational inequality for these averages (at lacunary scales) in the optimal range $r > 2$. We are also able to ``break duality'' by handling some ranges of exponents $p_1,p_2$ with $\frac{1}{p_1}+\frac{1}{p_2} > 1$, at the cost of increasing $r$ slightly. This gives an affirmative answer to Problem 11 from Frantzikinakis' open problems survey for the Furstenberg--Weiss averages (with $P(\mathrm{n})=\mathrm{n}^2$), which is a bilinear variant of Question 9 considered by Bergelson in his survey on Ergodic Ramsey Theory from 1996. Our methods combine techniques from harmonic analysis with the recent inverse theorems of Peluse and Prendiville in additive combinatorics. At large scales, the harmonic analysis of the adelic integers $\mathbb A_{\mathbb Z}$ also plays a role.
非常规双线性多项式平均的点态遍历定理
对于非常规(在Furstenberg意义上)双线性多项式遍历平均,我们几乎处处建立了范数收敛性和点向收敛性 \[ A_N(f,g)(x) := \frac{1}{N} \sum_{n =1}^N f(T^nx) g(T^{P(n)}x)\] as $N \to \infty$,其中 $T \colon X \to X$ 是a的保测度变换吗 $\sigma$-有限测度空间 $(X,\mu)$, $P(\mathrm{n}) \in \mathbb Z[\mathrm{n}]$ 是次数的多项式吗 $d \geq 2$,和 $f \in L^{p_1}(X), \ g \in L^{p_2}(X)$ 对一些人来说 $p_1,p_2 > 1$ 有 $\frac{1}{p_1} + \frac{1}{p_2} \leq 1$. 我们还建立了 $r$-这些平均值(在空白尺度下)在最佳范围内的变分不等式 $r > 2$. 我们还可以通过处理指数的某些范围来“打破对偶性” $p_1,p_2$ 有 $\frac{1}{p_1}+\frac{1}{p_2} > 1$,代价是不断增长 $r$ 稍微。这就给出了Frantzikinakis为Furstenberg- Weiss平均值所做的开放性问题调查中的第11个问题的肯定答案 $P(\mathrm{n})=\mathrm{n}^2$),这是Bergelson在1996年对遍历拉姆齐理论(Ergodic Ramsey Theory)的调查中考虑的问题9的双线性变体。我们的方法结合了调和分析技术和最近的加性组合学中的Peluse和Prendiville逆定理。在大尺度下,阿德利克整数的调和分析 $\mathbb A_{\mathbb Z}$ 也发挥了作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信