{"title":"Antioxidant-stabilizer depletion of 4 HDPE geomembranes with high HP-OIT in MSW leachate","authors":"M. Clinton, R. Rowe","doi":"10.1680/jgein.23.00041","DOIUrl":null,"url":null,"abstract":"The antioxidant-stabilizer depletion of four 1.5-mm HDPE geomembranes from the same manufacturer each with a different resin and additive package is examined in air and a synthetic municipal solid waste leachate at a range of temperatures (40-95°C) for 7.5 years. Two were formulated for high-temperatures and used polyethylene of raised temperature resistance (PE-RT) resins while two used more conventional HDPE geomembrane formulations. The depletion of protective antioxidants and stabilizers was monitored using standard and high-pressure oxidative induction time (OIT) tests and the notably different depletion times for both OIT tests implied they were detecting different groups of AO-S. Although both PE-RT GMBs showed significantly slower AO-S depletion at 85°C in air compared to the conventional PE GMBs, only one PE-RT GMB maintained this status in 85°C leachate, highlighting the limitation of air aging tests (and importance of fluid immersion tests). The importance of running immersion tests long enough to reveal the residual HP-OIT value is stressed. The roles of stabilizer mobility and solubility in polyethylene and their suspected involvement in residual HP-OIT behavior is also illustrated.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00041","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The antioxidant-stabilizer depletion of four 1.5-mm HDPE geomembranes from the same manufacturer each with a different resin and additive package is examined in air and a synthetic municipal solid waste leachate at a range of temperatures (40-95°C) for 7.5 years. Two were formulated for high-temperatures and used polyethylene of raised temperature resistance (PE-RT) resins while two used more conventional HDPE geomembrane formulations. The depletion of protective antioxidants and stabilizers was monitored using standard and high-pressure oxidative induction time (OIT) tests and the notably different depletion times for both OIT tests implied they were detecting different groups of AO-S. Although both PE-RT GMBs showed significantly slower AO-S depletion at 85°C in air compared to the conventional PE GMBs, only one PE-RT GMB maintained this status in 85°C leachate, highlighting the limitation of air aging tests (and importance of fluid immersion tests). The importance of running immersion tests long enough to reveal the residual HP-OIT value is stressed. The roles of stabilizer mobility and solubility in polyethylene and their suspected involvement in residual HP-OIT behavior is also illustrated.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.