Overlapping Signal Separation Method Using Superresolution Technique Based on Experimental Echo Shape

Q2 Physics and Astronomy
Jihad Al-Oudatallah, F. Abboud, Mazen Khoury, H. Ibrahim
{"title":"Overlapping Signal Separation Method Using Superresolution Technique Based on Experimental Echo Shape","authors":"Jihad Al-Oudatallah, F. Abboud, Mazen Khoury, H. Ibrahim","doi":"10.1155/2017/7132038","DOIUrl":null,"url":null,"abstract":"Overlapping signals separation is a difficult problem, where time windowing is unable to separate signals overlapping in time and frequency domain filtering is unable to separate signals with overlapping spectra. In this work, a simulation under MATLAB is implemented to illustrate the concept of overlapping signals. We propose an approach for resolving overlapping signals based on Fourier transform and inverse Fourier transform. The proposed approach is tested under MATLAB, and the simulation results validate the effectiveness and the accuracy of the proposed approach. The approach is developed using Gerchberg superresolution technique to cope with signals with low signal-to-noise ratio. For practical work, an echo shape determination is required to apply the proposed technique. The experimental results show accurate localization of multiple targets.","PeriodicalId":44068,"journal":{"name":"Advances in Acoustics and Vibration","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7132038","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/7132038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 5

Abstract

Overlapping signals separation is a difficult problem, where time windowing is unable to separate signals overlapping in time and frequency domain filtering is unable to separate signals with overlapping spectra. In this work, a simulation under MATLAB is implemented to illustrate the concept of overlapping signals. We propose an approach for resolving overlapping signals based on Fourier transform and inverse Fourier transform. The proposed approach is tested under MATLAB, and the simulation results validate the effectiveness and the accuracy of the proposed approach. The approach is developed using Gerchberg superresolution technique to cope with signals with low signal-to-noise ratio. For practical work, an echo shape determination is required to apply the proposed technique. The experimental results show accurate localization of multiple targets.
基于实验回波形状的超分辨重叠信号分离方法
重叠信号的分离是一个难题,时间窗无法分离重叠的信号,时频域滤波无法分离频谱重叠的信号。在这项工作中,在MATLAB下实现了一个仿真来说明重叠信号的概念。提出了一种基于傅里叶变换和反傅里叶变换的重叠信号求解方法。在MATLAB环境下对所提方法进行了测试,仿真结果验证了所提方法的有效性和准确性。该方法采用Gerchberg超分辨率技术来处理低信噪比的信号。在实际工作中,需要确定回波形状以应用所提出的技术。实验结果表明,该方法能准确定位多个目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The aim of Advances in Acoustics and Vibration is to act as a platform for dissemination of innovative and original research and development work in the area of acoustics and vibration. The target audience of the journal comprises both researchers and practitioners. Articles with innovative works of theoretical and/or experimental nature with research and/or application focus can be considered for publication in the journal. Articles submitted for publication in Advances in Acoustics and Vibration must neither have been published previously nor be under consideration elsewhere. Subject areas include (but are not limited to): Active, semi-active, passive and combined active-passive noise and vibration control Acoustic signal processing Aero-acoustics and aviation noise Architectural acoustics Audio acoustics, mechanisms of human hearing, musical acoustics Community and environmental acoustics and vibration Computational acoustics, numerical techniques Condition monitoring, health diagnostics, vibration testing, non-destructive testing Human response to sound and vibration, Occupational noise exposure and control Industrial, machinery, transportation noise and vibration Low, mid, and high frequency noise and vibration Materials for noise and vibration control Measurement and actuation techniques, sensors, actuators Modal analysis, statistical energy analysis, wavelet analysis, inverse methods Non-linear acoustics and vibration Sound and vibration sources, source localisation, sound propagation Underwater and ship acoustics Vibro-acoustics and shock.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信