Selective Inference for Effect Modification: An Empirical Investigation

Qingyuan Zhao, Snigdha Panigrahi
{"title":"Selective Inference for Effect Modification: An Empirical Investigation","authors":"Qingyuan Zhao, Snigdha Panigrahi","doi":"10.1353/obs.2019.0007","DOIUrl":null,"url":null,"abstract":"Abstract:We demonstrate a selective inferential approach for discovering and making confident conclusions about treatment effect heterogeneity. Our method consists of two stages. First, we use Robinson’s transformation to eliminate confounding in the observational study. Next we select a simple model for effect modification using lasso-regularized regression and then use recently developed tools in selective inference to make valid statistical inference for the discovered effect modifiers. We analyze the Mindset Study data-set provided by the workshop organizers and compare our approach with other benchmark methods.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/obs.2019.0007","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2019.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract:We demonstrate a selective inferential approach for discovering and making confident conclusions about treatment effect heterogeneity. Our method consists of two stages. First, we use Robinson’s transformation to eliminate confounding in the observational study. Next we select a simple model for effect modification using lasso-regularized regression and then use recently developed tools in selective inference to make valid statistical inference for the discovered effect modifiers. We analyze the Mindset Study data-set provided by the workshop organizers and compare our approach with other benchmark methods.
效果修正的选择性推理:一项实证研究
摘要:我们展示了一种选择性推理方法来发现和得出关于治疗效果异质性的可靠结论。我们的方法包括两个阶段。首先,我们使用罗宾逊变换来消除观察研究中的混淆。接下来,我们使用套索正则化回归选择一个简单的效果修正模型,然后使用最近开发的选择性推理工具对发现的效果修正器进行有效的统计推断。我们分析了研讨会组织者提供的心态研究数据集,并将我们的方法与其他基准方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信