Karlien Balt, P. D. Toit, Mark E. B. Smith, C. V. Rensburg
{"title":"The The Effect of Infraslow Frequency Neurofeedback on Autonomic Nervous System Function in Adults with Anxiety and Related Diseases","authors":"Karlien Balt, P. D. Toit, Mark E. B. Smith, C. V. Rensburg","doi":"10.15540/nr.7.2.64","DOIUrl":null,"url":null,"abstract":"Peripheral body monitoring of autonomic nervous system (ANS) response has been routinely applied during infraslow fluctuation (ISF) neurofeedback training. This study hypothesized that ISF training has a distinct physiological effect on an individual that can be revealed by measuring autonomic function with peripheral biofeedback metrics that included heart rate variability (HRV), muscle tension, skin temperature, skin conductance, heart rate, respiration rate, and blood pressure. Methods. Thirty adults between the ages of 18 and 55, primarily with anxiety, were randomized into two groups: 20 in the experimental group and 9 in the control group. The experimental group completed 10 ISF neurofeedback training sessions while continuous monitoring of ANS changes was applied. The same process was completed for a control group that received one-channel sensorimotor rhythm (SMR) neurofeedback training. Results. Significant changes were seen in the skin conductance (p < .0001), electromyography (p = .01), very low frequency (p = .004), low frequency of HRV (p = .05) and blood pressure (systolic change p = .049) in the experimental group. No significant changes were seen in the control group. Conclusion. The study demonstrated that ISF neurofeedback training impacts the ANS as measured by peripheral biofeedback indicators.","PeriodicalId":37439,"journal":{"name":"NeuroRegulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRegulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15540/nr.7.2.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 8
Abstract
Peripheral body monitoring of autonomic nervous system (ANS) response has been routinely applied during infraslow fluctuation (ISF) neurofeedback training. This study hypothesized that ISF training has a distinct physiological effect on an individual that can be revealed by measuring autonomic function with peripheral biofeedback metrics that included heart rate variability (HRV), muscle tension, skin temperature, skin conductance, heart rate, respiration rate, and blood pressure. Methods. Thirty adults between the ages of 18 and 55, primarily with anxiety, were randomized into two groups: 20 in the experimental group and 9 in the control group. The experimental group completed 10 ISF neurofeedback training sessions while continuous monitoring of ANS changes was applied. The same process was completed for a control group that received one-channel sensorimotor rhythm (SMR) neurofeedback training. Results. Significant changes were seen in the skin conductance (p < .0001), electromyography (p = .01), very low frequency (p = .004), low frequency of HRV (p = .05) and blood pressure (systolic change p = .049) in the experimental group. No significant changes were seen in the control group. Conclusion. The study demonstrated that ISF neurofeedback training impacts the ANS as measured by peripheral biofeedback indicators.
期刊介绍:
NeuroRegulation is a peer-reviewed journal providing an integrated, multidisciplinary perspective on clinically relevant research, treatment, reviews, and public policy for neuroregulation and neurotherapy. NeuroRegulation publishes important findings in these fields with a focus on electroencephalography (EEG), neurofeedback (EEG biofeedback), quantitative electroencephalography (qEEG), psychophysiology, biofeedback, heart rate variability, photobiomodulation, repetitive Transcranial Magnetic Simulation (rTMS) and transcranial Direct Current Stimulation (tDCS); with a focus on treatment of psychiatric, mind-body, and neurological disorders. In addition to research findings and reviews, it is important to stress that publication of case reports is always useful in furthering the advancement of an intervention for both clinical and normative functioning. We strive for high quality and interesting empirical topics presented in a rigorous and scholarly manner. The journal draws from expertise inside and outside of the International Society for Neurofeedback & Research (ISNR) to deliver material which integrates the diverse aspects of the field, to include: *basic science *clinical aspects *treatment evaluation *philosophy *training and certification issues *technology and equipment