Bootstrapping Nonparametric Prediction Intervals for Conditional Value-at-Risk with Heteroscedasticity

IF 1 Q3 STATISTICS & PROBABILITY
E. Torsen, Lema Logamou Seknewna
{"title":"Bootstrapping Nonparametric Prediction Intervals for Conditional Value-at-Risk with Heteroscedasticity","authors":"E. Torsen, Lema Logamou Seknewna","doi":"10.1155/2019/7691841","DOIUrl":null,"url":null,"abstract":"Using bootstrap method, we have constructed nonparametric prediction intervals for Conditional Value-at-Risk for returns that admit a heteroscedastic location-scale model where the location and scale functions are smooth, and the function of the error term is unknown and is assumed to be uncorrelated to the independent variable. The prediction interval performs well for large sample sizes and is relatively small, which is consistent with what is obtainable in the literature.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7691841","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/7691841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

Using bootstrap method, we have constructed nonparametric prediction intervals for Conditional Value-at-Risk for returns that admit a heteroscedastic location-scale model where the location and scale functions are smooth, and the function of the error term is unknown and is assumed to be uncorrelated to the independent variable. The prediction interval performs well for large sample sizes and is relatively small, which is consistent with what is obtainable in the literature.
具有异方差条件风险值的自举非参数预测区间
利用自举法,我们构造了条件风险值的非参数预测区间,该预测区间允许一个异方差位置-尺度模型,其中位置和尺度函数是光滑的,误差项的函数是未知的,并且假设与自变量不相关。预测区间在大样本量下表现良好,并且相对较小,这与文献中可获得的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信