{"title":"On a conjecture of Zhuang and Gao","authors":"Yongke Qu, Yuanlin Li","doi":"10.4064/cm8685-2-2022","DOIUrl":null,"url":null,"abstract":"Let G be a multiplicatively written finite group. We denote by E(G) the smallest integer t such that every sequence of t elements in G contains a product-one subsequence of length |G|. In 1961, Erdős, Ginzburg and Ziv proved that E(G) ≤ 2|G|−1 for every finite ablian group G and this result is known as the Erdős-Ginzburg-Ziv Theorem. In 2005, Zhuang and Gao conjectured that E(G) = d(G) + |G|, where d(G) is the small Davenport constant. In this paper, we confirm the conjecture for the case when G = 〈x, y|x = y = 1, xyx = y〉, where p is the smallest prime divisor of |G| and gcd(p(r − 1),m) = 1.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8685-2-2022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
Let G be a multiplicatively written finite group. We denote by E(G) the smallest integer t such that every sequence of t elements in G contains a product-one subsequence of length |G|. In 1961, Erdős, Ginzburg and Ziv proved that E(G) ≤ 2|G|−1 for every finite ablian group G and this result is known as the Erdős-Ginzburg-Ziv Theorem. In 2005, Zhuang and Gao conjectured that E(G) = d(G) + |G|, where d(G) is the small Davenport constant. In this paper, we confirm the conjecture for the case when G = 〈x, y|x = y = 1, xyx = y〉, where p is the smallest prime divisor of |G| and gcd(p(r − 1),m) = 1.
期刊介绍:
Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics.
Two issues constitute a volume, and at least four volumes are published each year.