On a conjecture of Zhuang and Gao

Pub Date : 2021-07-14 DOI:10.4064/cm8685-2-2022
Yongke Qu, Yuanlin Li
{"title":"On a conjecture of Zhuang and Gao","authors":"Yongke Qu, Yuanlin Li","doi":"10.4064/cm8685-2-2022","DOIUrl":null,"url":null,"abstract":"Let G be a multiplicatively written finite group. We denote by E(G) the smallest integer t such that every sequence of t elements in G contains a product-one subsequence of length |G|. In 1961, Erdős, Ginzburg and Ziv proved that E(G) ≤ 2|G|−1 for every finite ablian group G and this result is known as the Erdős-Ginzburg-Ziv Theorem. In 2005, Zhuang and Gao conjectured that E(G) = d(G) + |G|, where d(G) is the small Davenport constant. In this paper, we confirm the conjecture for the case when G = 〈x, y|x = y = 1, xyx = y〉, where p is the smallest prime divisor of |G| and gcd(p(r − 1),m) = 1.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8685-2-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Let G be a multiplicatively written finite group. We denote by E(G) the smallest integer t such that every sequence of t elements in G contains a product-one subsequence of length |G|. In 1961, Erdős, Ginzburg and Ziv proved that E(G) ≤ 2|G|−1 for every finite ablian group G and this result is known as the Erdős-Ginzburg-Ziv Theorem. In 2005, Zhuang and Gao conjectured that E(G) = d(G) + |G|, where d(G) is the small Davenport constant. In this paper, we confirm the conjecture for the case when G = 〈x, y|x = y = 1, xyx = y〉, where p is the smallest prime divisor of |G| and gcd(p(r − 1),m) = 1.
分享
查看原文
关于庄、高的一个猜想
设G是一个乘写有限群。我们用E(G)表示最小整数t,使得G中的每个t元素序列都包含长度为|G|的乘积一个子序列。1961年,Erdõs、Ginzburg和Ziv证明了对于每个有限ablian群G,E(G)≤2|G|−1,这一结果被称为Erdřs-Ginzburg-Ziv定理。2005年,庄和高推测,E(G)=d(G)+|G|,其中d(G)是小达文波特常数。本文证实了当G=〈x,y|x=y=1,xyx=y〉时的猜想,其中p是|G|和gcd(p(r−1),m)=1的最小素数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信