Dynamical study of the theta-logistic predator-prey model incorporating gregarious behavior of prey

IF 0.4 Q4 MATHEMATICS, APPLIED
P. Santra, G. Mahapatra
{"title":"Dynamical study of the theta-logistic predator-prey model incorporating gregarious behavior of prey","authors":"P. Santra, G. Mahapatra","doi":"10.5206/mase/15648","DOIUrl":null,"url":null,"abstract":"Relation between species and their livelihood environment in ecological systems is very complex. For that reason, in order to study predator-prey  relations, modeling is essential in biomathematics. The vital components of predator-prey models are prey species' growth function in the absence of apredator and the functional response. In this article, we proposed a predator-prey model with gregarious prey. In the existing literature, square-root functional response incorporates the gregarious behavior of prey. This study considers the generalized square root functional response and theta-logistic growth of prey in the absence of a predator. The effect of functional response parameters on stability, limit cycle, and Hopf bifurcation on the proposed model has been discussed. Numerical analysis is performed on the basis of some hypothetical parameter values to analyze the model numerically.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/15648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Relation between species and their livelihood environment in ecological systems is very complex. For that reason, in order to study predator-prey  relations, modeling is essential in biomathematics. The vital components of predator-prey models are prey species' growth function in the absence of apredator and the functional response. In this article, we proposed a predator-prey model with gregarious prey. In the existing literature, square-root functional response incorporates the gregarious behavior of prey. This study considers the generalized square root functional response and theta-logistic growth of prey in the absence of a predator. The effect of functional response parameters on stability, limit cycle, and Hopf bifurcation on the proposed model has been discussed. Numerical analysis is performed on the basis of some hypothetical parameter values to analyze the model numerically.
考虑捕食群体行为的θ逻辑捕食-被捕食模型的动力学研究
生态系统中物种与其生存环境的关系十分复杂。因此,为了研究捕食者-猎物关系,建模在生物数学中是必不可少的。捕食者-猎物模型的重要组成部分是在没有捕食者的情况下被捕食物种的生长功能和功能反应。在本文中,我们提出了一个具有群居性猎物的捕食者-猎物模型。在现有文献中,平方根功能反应包含了猎物的群居行为。本研究考虑了在没有捕食者的情况下,猎物的广义平方根功能反应和theta-logistic增长。讨论了函数响应参数对模型稳定性、极限环和Hopf分岔的影响。在一些假设参数值的基础上进行数值分析,对模型进行数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信