{"title":"Biogas Production from Co-Digestion of Grass with Food Waste","authors":"Hamidatu S. Darimani, D. Pant","doi":"10.4236/jacen.2020.91003","DOIUrl":null,"url":null,"abstract":"Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance. Grass (GR) mixed with the co-substrate food waste (FW) was then evaluated under anaerobic conditions for the production of biogas (methane). Five laboratory-scale reactors, R1 (100% FW, 0% GR), R2 (75% FW, 25% GR), R3 (50% FW, 50% GR), R4 (25% FW, 75% GR) and R5 (0% FW, 100% GR) were set up with different proportions of grass and food waste which had 8% total solid concentration. Digestion was carried out for twenty (20) days at room temperature, 35°C ± 2°C. The biogas yield in the R1, R2, R3, R4, R5 was 805, 840, 485, 243 and 418 mL respectively. Food waste only produced 805 mL and grass only produced 418 mL of biogas. Food waste only produced 50% more biogas than grass. However, co-digestion at 75% FW, 25% resulted in 6% more biogas than food waste only.","PeriodicalId":68148,"journal":{"name":"农业化学和环境(英文)","volume":"9 1","pages":"27-36"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"农业化学和环境(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.4236/jacen.2020.91003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance. Grass (GR) mixed with the co-substrate food waste (FW) was then evaluated under anaerobic conditions for the production of biogas (methane). Five laboratory-scale reactors, R1 (100% FW, 0% GR), R2 (75% FW, 25% GR), R3 (50% FW, 50% GR), R4 (25% FW, 75% GR) and R5 (0% FW, 100% GR) were set up with different proportions of grass and food waste which had 8% total solid concentration. Digestion was carried out for twenty (20) days at room temperature, 35°C ± 2°C. The biogas yield in the R1, R2, R3, R4, R5 was 805, 840, 485, 243 and 418 mL respectively. Food waste only produced 805 mL and grass only produced 418 mL of biogas. Food waste only produced 50% more biogas than grass. However, co-digestion at 75% FW, 25% resulted in 6% more biogas than food waste only.