Rodrigo Monzon Figueredo, Mariana Cristina de Oliveira, Leandro Jesus de Paula, H. A. Acciari, E. N. Codaro
{"title":"A Comparative Study of Hydrogen-Induced Cracking Resistances of API 5L B and X52MS Carbon Steels","authors":"Rodrigo Monzon Figueredo, Mariana Cristina de Oliveira, Leandro Jesus de Paula, H. A. Acciari, E. N. Codaro","doi":"10.1155/2018/1604507","DOIUrl":null,"url":null,"abstract":"Susceptibility to hydrogen-induced cracking of API 5L B and X52MS low-carbon steels in NACE 177-A, 177-B, and 284-B solutions has been investigated by the present work. A metallographic analysis of these steels was performed before and after NACE TM0284 standard testing. Corrosion products were characterized by scanning electron microscopy and X-ray dispersive energy spectrometry, which were subsequently identified by X-ray diffraction. Thus it was found that pH directly affects the solubility of corrosion products and hydrogen permeation. Both steels showed generalized corrosion in solution 177-A, and a discontinuous film was formed on their surfaces in solution 177-B; however, only the API 5L B steel failed the HIC test and exhibited greater crack length ratio in solution 177-A. In solution 284-B whose pH is higher, the steels exhibited thick mackinawite films with no internal cracking.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/1604507","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/1604507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 10
Abstract
Susceptibility to hydrogen-induced cracking of API 5L B and X52MS low-carbon steels in NACE 177-A, 177-B, and 284-B solutions has been investigated by the present work. A metallographic analysis of these steels was performed before and after NACE TM0284 standard testing. Corrosion products were characterized by scanning electron microscopy and X-ray dispersive energy spectrometry, which were subsequently identified by X-ray diffraction. Thus it was found that pH directly affects the solubility of corrosion products and hydrogen permeation. Both steels showed generalized corrosion in solution 177-A, and a discontinuous film was formed on their surfaces in solution 177-B; however, only the API 5L B steel failed the HIC test and exhibited greater crack length ratio in solution 177-A. In solution 284-B whose pH is higher, the steels exhibited thick mackinawite films with no internal cracking.