{"title":"Revisiting the Conditional Construal of Conditional Probability","authors":"Jakub Węgrecki, L. Wronski","doi":"10.12775/llp.2022.024","DOIUrl":null,"url":null,"abstract":"We show how to extend any finite probability space into another finite one which satisfies the conditional construal of conditional probability for the original propositions, given some maximal allowed degree of nesting of the conditional. This mitigates the force of the well-known triviality results.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2022.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1
Abstract
We show how to extend any finite probability space into another finite one which satisfies the conditional construal of conditional probability for the original propositions, given some maximal allowed degree of nesting of the conditional. This mitigates the force of the well-known triviality results.