{"title":"Rigidity, counting and equidistribution of quaternionic Cartan chains","authors":"Jouni Parkkonen, F. Paulin","doi":"10.5802/ambp.399","DOIUrl":null,"url":null,"abstract":"We prove an analog of Cartan's theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
We prove an analog of Cartan's theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.