{"title":"Growth of pseudo-Anosov conjugacy classes in Teichmüller space","authors":"Jiawei Han","doi":"10.4171/ggd/724","DOIUrl":null,"url":null,"abstract":"Athreya, Bufetov, Eskin and Mirzakhani have shown the number of mapping class group lattice points intersecting a closed ball of radius $R$ in Teichm\\\"{u}ller space is asymptotic to $e^{hR}$, where $h$ is the dimension of the Teichm\\\"{u}ller space. We show for any pseudo-Anosov mapping class $f$, there exists a power $n$, such that the number of lattice points of the $f^n$ conjugacy class intersecting a closed ball of radius $R$ is coarsely asymptotic to $e^{\\frac{h}{2}R}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Athreya, Bufetov, Eskin and Mirzakhani have shown the number of mapping class group lattice points intersecting a closed ball of radius $R$ in Teichm\"{u}ller space is asymptotic to $e^{hR}$, where $h$ is the dimension of the Teichm\"{u}ller space. We show for any pseudo-Anosov mapping class $f$, there exists a power $n$, such that the number of lattice points of the $f^n$ conjugacy class intersecting a closed ball of radius $R$ is coarsely asymptotic to $e^{\frac{h}{2}R}$.