Besse Extended Cubic B-spline Collocation Method for Solving Benjamin-Bona-Mahony Equation

IF 0.3 Q4 MATHEMATICS
Nur Nadiah Mohd Rahan, Nur Nadiah Abd Hamid
{"title":"Besse Extended Cubic B-spline Collocation Method for Solving Benjamin-Bona-Mahony Equation","authors":"Nur Nadiah Mohd Rahan, Nur Nadiah Abd Hamid","doi":"10.11113/matematika.v39.n1.1448","DOIUrl":null,"url":null,"abstract":"Extended cubic B-spline collocation method is formulated to solve the Benjamin-Bona-Mahony equation without linearization. The Besse relaxation scheme is applied on the nonlinear terms and therefore transforms the equation into a systemof two linear equations. The time derivative is discretized using Forward Difference Approximation whereas the spatial dimension is approximated using extended cubic B-spline function. Applying the von-Neumann stability analysis, the proposed technique are shown unconditionally stable. Two numerical examples are presented and the results are compared with the exact solutions and recent methods.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/matematika.v39.n1.1448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Extended cubic B-spline collocation method is formulated to solve the Benjamin-Bona-Mahony equation without linearization. The Besse relaxation scheme is applied on the nonlinear terms and therefore transforms the equation into a systemof two linear equations. The time derivative is discretized using Forward Difference Approximation whereas the spatial dimension is approximated using extended cubic B-spline function. Applying the von-Neumann stability analysis, the proposed technique are shown unconditionally stable. Two numerical examples are presented and the results are compared with the exact solutions and recent methods.
求解Benjamin-Bona-Mahony方程的Besse扩展三次B样条配置方法
为了求解Benjamin-Bona-Mahony方程,提出了一种不进行线性化的扩展三次B样条配置方法。贝塞尔松弛格式应用于非线性项,因此将方程转换为两个线性方程组。时间导数使用前向差分近似进行离散,而空间维度使用扩展的三次B样条函数进行近似。应用von Neumann稳定性分析,证明了所提出的技术是无条件稳定的。给出了两个数值例子,并将结果与精确解和最近的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信