PRODUCTS OF ULTRAFILTERS AND MAXIMAL LINKED SYSTEMS ON WIDELY UNDERSTOOD MEASURABLE SPACES

Q3 Mathematics
A. Chentsov
{"title":"PRODUCTS OF ULTRAFILTERS AND MAXIMAL LINKED SYSTEMS ON WIDELY UNDERSTOOD MEASURABLE SPACES","authors":"A. Chentsov","doi":"10.15826/umj.2021.2.001","DOIUrl":null,"url":null,"abstract":"Constructions related to products of maximal linked systems (MLSs) and MLSs  on the product of widely understood measurable spaces are considered (these measurable spaces are defined as sets equipped with \\(\\pi\\)-systems of their subsets; a \\(\\pi\\)-system is a family closed with respect to finite intersections). We compare families of MLSs on initial spaces and MLSs on the product. Separately, we consider the case of ultrafilters. Equipping set-products with topologies, we use the box-topology and the Tychonoff product of Stone-type topologies. The properties of compaction and homeomorphism hold, respectively.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2021.2.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Constructions related to products of maximal linked systems (MLSs) and MLSs  on the product of widely understood measurable spaces are considered (these measurable spaces are defined as sets equipped with \(\pi\)-systems of their subsets; a \(\pi\)-system is a family closed with respect to finite intersections). We compare families of MLSs on initial spaces and MLSs on the product. Separately, we consider the case of ultrafilters. Equipping set-products with topologies, we use the box-topology and the Tychonoff product of Stone-type topologies. The properties of compaction and homeomorphism hold, respectively.
在广泛理解的可测空间上的超滤波器和极大连接系统的乘积
考虑了与极大链接系统(MLSs)的乘积有关的构造和在广泛理解的可测量空间的乘积上的MLSs(这些可测量空间被定义为配备有其子集的\(\pi\)-系统的集合;一个\(\pi\)-系统是一个关于有限交集闭合的族)。我们比较了初始空间上的MLS族和乘积上的MLS。另外,我们考虑超滤器的情况。为成套产品配备拓扑结构,我们使用箱式拓扑结构和Stone型拓扑结构的Tychonoff产品。紧致和同胚的性质分别成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信