Graded weakly 1-absorbing prime ideals

IF 0.5 Q3 MATHEMATICS
Cubo Pub Date : 2022-08-01 DOI:10.56754/0719-0646.2402.0291
Ünsal Tekir, Suat Koç, R. Abu-Dawwas, E. Yıldız
{"title":"Graded weakly 1-absorbing prime ideals","authors":"Ünsal Tekir, Suat Koç, R. Abu-Dawwas, E. Yıldız","doi":"10.56754/0719-0646.2402.0291","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and study graded weakly 1-absorbing prime ideals in graded commutative rings. Let \\(G\\) be a group and \\(R\\) be a \\(G\\)-graded commutative ring with a nonzero identity \\(1\\neq0\\). A proper graded ideal \\(P\\) of \\(R\\) is called a graded weakly 1-absorbing prime ideal if for each nonunits \\(x,y,z\\in h(R)\\) with \\(0\\neq xyz\\in P\\), then either \\(xy\\in P\\) or \\(z\\in P\\). We give many properties and characterizations of graded weakly 1-absorbing prime ideals. Moreover, we investigate weakly 1-absorbing prime ideals under homomorphism, in factor ring, in rings of fractions, in idealization.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2402.0291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we introduce and study graded weakly 1-absorbing prime ideals in graded commutative rings. Let \(G\) be a group and \(R\) be a \(G\)-graded commutative ring with a nonzero identity \(1\neq0\). A proper graded ideal \(P\) of \(R\) is called a graded weakly 1-absorbing prime ideal if for each nonunits \(x,y,z\in h(R)\) with \(0\neq xyz\in P\), then either \(xy\in P\) or \(z\in P\). We give many properties and characterizations of graded weakly 1-absorbing prime ideals. Moreover, we investigate weakly 1-absorbing prime ideals under homomorphism, in factor ring, in rings of fractions, in idealization.
分次弱1-吸收素理想
本文引入并研究了分阶交换环上的分阶弱吸收素理想。让 \(G\) 团结一致 \(R\) 做一个 \(G\)具有非零单位元的-分级交换环 \(1\neq0\)。适当分级的理想 \(P\) 的 \(R\) 被称为梯度弱吸收素理想如果对于每个非单位 \(x,y,z\in h(R)\) 有 \(0\neq xyz\in P\),那么要么 \(xy\in P\) 或 \(z\in P\)。给出了分级弱吸收素理想的许多性质和特征。此外,我们还研究了同态、因子环、分数环、理想条件下弱吸收素理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信