C. Machahua, V. Vicens-Zygmunt, Jesús Ríos-Martín, R. Llatjós, Ignacio Escobar-Campuzano, M. Molina-Molina, A. Montes-Worboys
{"title":"Collagen 3D matrices as a model for the study of cell behavior in pulmonary fibrosis","authors":"C. Machahua, V. Vicens-Zygmunt, Jesús Ríos-Martín, R. Llatjós, Ignacio Escobar-Campuzano, M. Molina-Molina, A. Montes-Worboys","doi":"10.1080/01902148.2022.2067265","DOIUrl":null,"url":null,"abstract":"Abstract Purpose: Idiopathic pulmonary fibrosis (IPF) is a complex progressive chronic lung disease where epithelial to mesenchymal interaction, extracellular matrix (ECM) contact, and pro-fibrotic cytokines dynamics take part in the development of the disease. The study of IPF in the widespread in vitro two-dimensional (2 D) culture fails to explain the interaction of cells with the changing environment that occurs in fibrotic lung tissue. A three-dimensional (3 D) co-culture model might shed light on the pathogenesis of IPF by mimicking the fibrotic environment. Materials and Methods: Fibroblasts from nine IPF were isolated and embedded in collagen matrices with the alveolar epithelial human cell line (A549) on the top. Cells were also cultured in 2 D with and without TGF-β1 as a conventional model to compare with. Both types of cells were isolated separately. Protein and gene expression of the main fibrotic markers were measured by qPCR, Western blot, and ELISA. Results: IPF fibroblasts to myofibroblasts differentiation was observed in the 3 D model and in cells stimulated with TGF-β1. In addition, ECM-related genes were highly up-regulated in the 3 D collagen matrix. A549 co-cultured 3 D with IPF fibroblasts showed EMT activation, with down-regulation of E-cadherin (CDH1). However, other pro-fibrotic genes as VIM, TGFB1, and MMP7 were up-regulated in A549 co-cultured 3 D with fibroblasts. Conclusions: 3 D-collagen matrices might induce fibroblasts’ fibrotic phenotype as in the classic TGF-β1 model, by up-regulating genes associated with matrix production. In addition, IPF lung fibroblasts seem to exert a pro-fibrotic influence in A549 cells when they are co-cultured. These results suggest that an improved 3 D co-culture model might serve as an important tool to study the fibrotic process and its regulation.","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"48 1","pages":"126 - 136"},"PeriodicalIF":1.5000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2022.2067265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Purpose: Idiopathic pulmonary fibrosis (IPF) is a complex progressive chronic lung disease where epithelial to mesenchymal interaction, extracellular matrix (ECM) contact, and pro-fibrotic cytokines dynamics take part in the development of the disease. The study of IPF in the widespread in vitro two-dimensional (2 D) culture fails to explain the interaction of cells with the changing environment that occurs in fibrotic lung tissue. A three-dimensional (3 D) co-culture model might shed light on the pathogenesis of IPF by mimicking the fibrotic environment. Materials and Methods: Fibroblasts from nine IPF were isolated and embedded in collagen matrices with the alveolar epithelial human cell line (A549) on the top. Cells were also cultured in 2 D with and without TGF-β1 as a conventional model to compare with. Both types of cells were isolated separately. Protein and gene expression of the main fibrotic markers were measured by qPCR, Western blot, and ELISA. Results: IPF fibroblasts to myofibroblasts differentiation was observed in the 3 D model and in cells stimulated with TGF-β1. In addition, ECM-related genes were highly up-regulated in the 3 D collagen matrix. A549 co-cultured 3 D with IPF fibroblasts showed EMT activation, with down-regulation of E-cadherin (CDH1). However, other pro-fibrotic genes as VIM, TGFB1, and MMP7 were up-regulated in A549 co-cultured 3 D with fibroblasts. Conclusions: 3 D-collagen matrices might induce fibroblasts’ fibrotic phenotype as in the classic TGF-β1 model, by up-regulating genes associated with matrix production. In addition, IPF lung fibroblasts seem to exert a pro-fibrotic influence in A549 cells when they are co-cultured. These results suggest that an improved 3 D co-culture model might serve as an important tool to study the fibrotic process and its regulation.
期刊介绍:
Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia.
Authors can choose to publish gold open access in this journal.