Uncertainty in automated valuation models: Error-based versus model-based approaches

IF 2.1 Q2 URBAN STUDIES
A. Krause, A. Martín, M. Fix
{"title":"Uncertainty in automated valuation models: Error-based versus model-based approaches","authors":"A. Krause, A. Martín, M. Fix","doi":"10.1080/09599916.2020.1807587","DOIUrl":null,"url":null,"abstract":"ABSTRACT Point estimates from Automated Valuation Models (AVMs) represent the most likely value from a distribution of possible values. The uncertainty in the point estimate – the width of the range of possible values at a given level of confidence – is a critical piece of the AVM output, especially in collateral and transactional situations. Estimating AVM uncertainty, however, remains highly unstandardised in both terminology and methods. In this paper, we present and compare two of the most common approaches to estimating AVM uncertainty – model-based and error-based prediction intervals. We also present a uniform language and framework for evaluating the calibration and efficiency of uncertainty estimates. Based on empirical tests on a large, longitudinal dataset of home sales, we show that model-based approaches outperform error-based ones in all but cases with very highest confidence level requirements. The differences between the two methods are conditioned on model class, geographic data partitions and data filtering conditions.","PeriodicalId":45726,"journal":{"name":"Journal of Property Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09599916.2020.1807587","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Property Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09599916.2020.1807587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"URBAN STUDIES","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT Point estimates from Automated Valuation Models (AVMs) represent the most likely value from a distribution of possible values. The uncertainty in the point estimate – the width of the range of possible values at a given level of confidence – is a critical piece of the AVM output, especially in collateral and transactional situations. Estimating AVM uncertainty, however, remains highly unstandardised in both terminology and methods. In this paper, we present and compare two of the most common approaches to estimating AVM uncertainty – model-based and error-based prediction intervals. We also present a uniform language and framework for evaluating the calibration and efficiency of uncertainty estimates. Based on empirical tests on a large, longitudinal dataset of home sales, we show that model-based approaches outperform error-based ones in all but cases with very highest confidence level requirements. The differences between the two methods are conditioned on model class, geographic data partitions and data filtering conditions.
自动估价模型中的不确定性:基于错误的方法与基于模型的方法
摘要自动估价模型(AVM)的点估计值代表了可能价值分布中最可能的价值。点估计的不确定性——给定置信水平下可能值范围的宽度——是AVM输出的关键部分,尤其是在抵押品和交易情况下。然而,估计AVM的不确定性在术语和方法上仍然高度不标准。在本文中,我们提出并比较了两种最常见的估计AVM不确定性的方法——基于模型的预测区间和基于误差的预测区间。我们还提出了一个统一的语言和框架来评估不确定性估计的校准和效率。基于对房屋销售的大型纵向数据集的实证测试,我们表明,除置信水平要求最高的情况外,基于模型的方法在所有情况下都优于基于误差的方法。两种方法之间的差异取决于模型类、地理数据分区和数据过滤条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
13
期刊介绍: The Journal of Property Research is an international journal. The title reflects the expansion of research, particularly applied research, into property investment and development. The Journal of Property Research publishes papers in any area of real estate investment and development. These may be theoretical, empirical, case studies or critical literature surveys.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信