Diamagnetic Susceptibility of a Hemi-Cylindrical Quantum Dot in the Presence of an Off-Center Donor Atom

Q4 Physics and Astronomy
O. Mommadi, S. Chouef, R. Boussetta, M. Hbibi, L. Belamkadem, M. Chnafi, M. El Hadi, A. El Moussaouy, C. M. Duque, C. A. Duque, A. K. El-Miad, F. Falyouni
{"title":"Diamagnetic Susceptibility of a Hemi-Cylindrical Quantum Dot in the Presence of an Off-Center Donor Atom","authors":"O. Mommadi, S. Chouef, R. Boussetta, M. Hbibi, L. Belamkadem, M. Chnafi, M. El Hadi, A. El Moussaouy, C. M. Duque, C. A. Duque, A. K. El-Miad, F. Falyouni","doi":"10.4028/p-KTnG7c","DOIUrl":null,"url":null,"abstract":"In this paper, we have studied the electron-donor atom diamagnetic susceptibility confined in a hemi-cylindrical quantum dot (QD). It is analyzed specifically how the impurity location affects diamagnetic susceptibility. The 3D Schrödinger equation in hemi-cylindrical QD was solved using the finite difference method within the effective mass approximation. This is accomplished by performing our system's Hamiltonian in hemi-cylindrical geometry. We have demonstrated that the hemicylindrical size and impurity position have a significant impact on the diamagnetic susceptibility. When the impurity is localized in the center of the nanostructure for the hemi-cylindrical QD, the diamagnetic susceptibility reaches its greatest value.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"428 1","pages":"83 - 90"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-KTnG7c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we have studied the electron-donor atom diamagnetic susceptibility confined in a hemi-cylindrical quantum dot (QD). It is analyzed specifically how the impurity location affects diamagnetic susceptibility. The 3D Schrödinger equation in hemi-cylindrical QD was solved using the finite difference method within the effective mass approximation. This is accomplished by performing our system's Hamiltonian in hemi-cylindrical geometry. We have demonstrated that the hemicylindrical size and impurity position have a significant impact on the diamagnetic susceptibility. When the impurity is localized in the center of the nanostructure for the hemi-cylindrical QD, the diamagnetic susceptibility reaches its greatest value.
偏心给体原子存在下半圆柱形量子点的抗磁化率
本文研究了半圆柱形量子点(QD)中电子供体原子的抗磁性。具体分析了杂质位置对抗磁化率的影响。在有效质量近似下,用有限差分法求解了半圆柱形量子点中的三维薛定谔方程。这是通过在半圆柱几何中执行我们系统的哈密顿量来实现的。我们已经证明,半圆柱形尺寸和杂质位置对抗磁化率有显著影响。当杂质位于半圆柱形QD的纳米结构的中心时,抗磁化率达到其最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Defect and Diffusion Forum
Defect and Diffusion Forum Physics and Astronomy-Radiation
CiteScore
1.20
自引率
0.00%
发文量
127
期刊介绍: Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信