A Novel Image Clustering Algorithm Based on Supported Nearest Neighbors

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Lin Li, Feng Zhang, Jiashuai Zhang, Qiang Hua, Chun-Ru Dong, C. Lim
{"title":"A Novel Image Clustering Algorithm Based on Supported Nearest Neighbors","authors":"Lin Li, Feng Zhang, Jiashuai Zhang, Qiang Hua, Chun-Ru Dong, C. Lim","doi":"10.1142/s0129054122460017","DOIUrl":null,"url":null,"abstract":"Unsupervised image clustering is a challenging task in computer vision. Recently, various deep clustering algorithms based on contrastive learning have achieved promising performance and some distinguishable features representation were obtained only by taking different augmented views of same image as positive pairs and maximizing their similarities, whereas taking other images’ augmentations in the same batch as negative pairs and minimizing their similarities. However, due to the fact that there is more than one image in a batch belong to the same class, simply pushing the negative instances apart will result in inter-class conflictions and lead to the clustering performance degradation. In order to solve this problem, we propose a deep clustering algorithm based on supported nearest neighbors (SNDC), which constructs positive pairs of current images by maintaining a support set and find its k nearest neighbors from the support set. By going beyond single instance positive, SNDC can learn more generalized features representation with inherent semantic meaning and therefore alleviating inter-class conflictions. Experimental results on multiple benchmark datasets show that the performance of SNDC is superior to the state-of-the-art clustering models, with accuracy improvement of 6.2% and 20.5% on CIFAR-10 and ImageNet-Dogs respectively.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054122460017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised image clustering is a challenging task in computer vision. Recently, various deep clustering algorithms based on contrastive learning have achieved promising performance and some distinguishable features representation were obtained only by taking different augmented views of same image as positive pairs and maximizing their similarities, whereas taking other images’ augmentations in the same batch as negative pairs and minimizing their similarities. However, due to the fact that there is more than one image in a batch belong to the same class, simply pushing the negative instances apart will result in inter-class conflictions and lead to the clustering performance degradation. In order to solve this problem, we propose a deep clustering algorithm based on supported nearest neighbors (SNDC), which constructs positive pairs of current images by maintaining a support set and find its k nearest neighbors from the support set. By going beyond single instance positive, SNDC can learn more generalized features representation with inherent semantic meaning and therefore alleviating inter-class conflictions. Experimental results on multiple benchmark datasets show that the performance of SNDC is superior to the state-of-the-art clustering models, with accuracy improvement of 6.2% and 20.5% on CIFAR-10 and ImageNet-Dogs respectively.
一种新的基于支持近邻的图像聚类算法
无监督图像聚类是计算机视觉中一项具有挑战性的任务。近年来,各种基于对比学习的深度聚类算法取得了良好的性能,仅通过将同一图像的不同增强视图作为正对并最大化其相似性,而将同一批次中的其他图像的增强视为负对并最小化其相似性就可以获得一些可区分的特征表示。然而,由于一个批中有多个映像属于同一类,简单地将负面实例分开会导致类间冲突,并导致集群性能下降。为了解决这个问题,我们提出了一种基于支持近邻的深度聚类算法(SNDC),该算法通过维护一个支持集来构造当前图像的正对,并从支持集中找到其k个近邻。通过超越单实例正态,SNDC可以学习到更多具有内在语义的广义特征表示,从而缓解类间冲突。在多个基准数据集上的实验结果表明,SNDC的性能优于最先进的聚类模型,在CIFAR-10和ImageNet Dogs上的准确率分别提高了6.2%和20.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信