Lin Li, Feng Zhang, Jiashuai Zhang, Qiang Hua, Chun-Ru Dong, C. Lim
{"title":"A Novel Image Clustering Algorithm Based on Supported Nearest Neighbors","authors":"Lin Li, Feng Zhang, Jiashuai Zhang, Qiang Hua, Chun-Ru Dong, C. Lim","doi":"10.1142/s0129054122460017","DOIUrl":null,"url":null,"abstract":"Unsupervised image clustering is a challenging task in computer vision. Recently, various deep clustering algorithms based on contrastive learning have achieved promising performance and some distinguishable features representation were obtained only by taking different augmented views of same image as positive pairs and maximizing their similarities, whereas taking other images’ augmentations in the same batch as negative pairs and minimizing their similarities. However, due to the fact that there is more than one image in a batch belong to the same class, simply pushing the negative instances apart will result in inter-class conflictions and lead to the clustering performance degradation. In order to solve this problem, we propose a deep clustering algorithm based on supported nearest neighbors (SNDC), which constructs positive pairs of current images by maintaining a support set and find its k nearest neighbors from the support set. By going beyond single instance positive, SNDC can learn more generalized features representation with inherent semantic meaning and therefore alleviating inter-class conflictions. Experimental results on multiple benchmark datasets show that the performance of SNDC is superior to the state-of-the-art clustering models, with accuracy improvement of 6.2% and 20.5% on CIFAR-10 and ImageNet-Dogs respectively.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054122460017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Unsupervised image clustering is a challenging task in computer vision. Recently, various deep clustering algorithms based on contrastive learning have achieved promising performance and some distinguishable features representation were obtained only by taking different augmented views of same image as positive pairs and maximizing their similarities, whereas taking other images’ augmentations in the same batch as negative pairs and minimizing their similarities. However, due to the fact that there is more than one image in a batch belong to the same class, simply pushing the negative instances apart will result in inter-class conflictions and lead to the clustering performance degradation. In order to solve this problem, we propose a deep clustering algorithm based on supported nearest neighbors (SNDC), which constructs positive pairs of current images by maintaining a support set and find its k nearest neighbors from the support set. By going beyond single instance positive, SNDC can learn more generalized features representation with inherent semantic meaning and therefore alleviating inter-class conflictions. Experimental results on multiple benchmark datasets show that the performance of SNDC is superior to the state-of-the-art clustering models, with accuracy improvement of 6.2% and 20.5% on CIFAR-10 and ImageNet-Dogs respectively.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing