Goodness-of-fit test for the parametric proportional hazard regression model with interval-censored data

Q3 Medicine
R. Sakurai, S. Hattori
{"title":"Goodness-of-fit test for the parametric proportional hazard regression model with interval-censored data","authors":"R. Sakurai, S. Hattori","doi":"10.1080/24709360.2018.1529347","DOIUrl":null,"url":null,"abstract":"ABSTRACT Interval-censored data are common in medical research. Fully parametric models provide simple and efficient inference for the estimation of survival functions using interval-censored observations. Inference based on a parametric regression model requires the complete specification of the probability density function, and therefore, correctly specifying the model is crucial, while the regression diagnostic is a very important step. However, regression diagnostic methods for use with the interval-censored data have not been completely developed. Here, we developed a model-checking procedure based on the cumulative martingale residuals for the interval-censored observations. We employed the conditional expectation of residuals for the diagnostics, because the data showing the exact failure time cannot be obtained for the interval-censoring analyses, and developed the formal resampling-based supremum-type test and graphical model-checking techniques. A simulation study demonstrated an excellent performance of the proposed method during the detection of a misspecified functional form of covariates in the finite sample. Furthermore, we used this method for the analysis of the medical checkup data obtained in Japan.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"2 1","pages":"115 - 131"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2018.1529347","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2018.1529347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Interval-censored data are common in medical research. Fully parametric models provide simple and efficient inference for the estimation of survival functions using interval-censored observations. Inference based on a parametric regression model requires the complete specification of the probability density function, and therefore, correctly specifying the model is crucial, while the regression diagnostic is a very important step. However, regression diagnostic methods for use with the interval-censored data have not been completely developed. Here, we developed a model-checking procedure based on the cumulative martingale residuals for the interval-censored observations. We employed the conditional expectation of residuals for the diagnostics, because the data showing the exact failure time cannot be obtained for the interval-censoring analyses, and developed the formal resampling-based supremum-type test and graphical model-checking techniques. A simulation study demonstrated an excellent performance of the proposed method during the detection of a misspecified functional form of covariates in the finite sample. Furthermore, we used this method for the analysis of the medical checkup data obtained in Japan.
区间截尾数据的参数比例风险回归模型的拟合优度检验
摘要区间截尾数据在医学研究中很常见。全参数模型为使用区间截尾观测的生存函数估计提供了简单有效的推断。基于参数回归模型的推理需要完全指定概率密度函数,因此,正确指定模型至关重要,而回归诊断是非常重要的一步。然而,用于区间截尾数据的回归诊断方法还没有完全开发出来。在这里,我们为区间截尾观测开发了一个基于累积鞅残差的模型检查程序。由于区间截尾分析无法获得显示确切故障时间的数据,我们在诊断中采用了残差的条件期望,并开发了基于形式重采样的上确界类型检验和图形模型检验技术。一项模拟研究表明,在有限样本中检测到错误指定的协变函数形式时,所提出的方法具有良好的性能。此外,我们将该方法用于分析在日本获得的体检数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信