Yang Xu , Peng-Nan Sun , Xiao-Ting Huang , Salvatore Marrone , Lei-Ming Geng
{"title":"Numerical study of the splashing wave induced by a seaplane using mesh-based and particle-based methods","authors":"Yang Xu , Peng-Nan Sun , Xiao-Ting Huang , Salvatore Marrone , Lei-Ming Geng","doi":"10.1016/j.taml.2023.100463","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, forest fires and maritime accidents have occurred frequently, which have had a bad impact on human production and life. Thus, the development of seaplanes is an increasingly urgent demand. It is important to study the taxiing process of seaplanes for the development of seaplanes, which is a strong nonlinear fluid-structure interaction problem. In this paper, the Smoothed Particle Hydrodynamics (SPH) method based on the Lagrangian framework is utilized to simulate the taxiing process of seaplanes, and the SPH results are compared with those of the Finite Volume Method (FVM) based on the Eulerian method. The results show that the SPH method can not only give the same accuracy as the FVM but also have a strong ability to capture the splashing waves in the taxiing process, which is quite meaningful for the subsequent study of the effect of a splash on other parts of the seaplane.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209503492300034X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, forest fires and maritime accidents have occurred frequently, which have had a bad impact on human production and life. Thus, the development of seaplanes is an increasingly urgent demand. It is important to study the taxiing process of seaplanes for the development of seaplanes, which is a strong nonlinear fluid-structure interaction problem. In this paper, the Smoothed Particle Hydrodynamics (SPH) method based on the Lagrangian framework is utilized to simulate the taxiing process of seaplanes, and the SPH results are compared with those of the Finite Volume Method (FVM) based on the Eulerian method. The results show that the SPH method can not only give the same accuracy as the FVM but also have a strong ability to capture the splashing waves in the taxiing process, which is quite meaningful for the subsequent study of the effect of a splash on other parts of the seaplane.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).