José Jaime G. P. Neto, A. Campos, R. Lira, A. Gomes Neto, Maurício W. B. Silva
{"title":"Absorb/Transmit Broadband Type Frequency Selective Surface","authors":"José Jaime G. P. Neto, A. Campos, R. Lira, A. Gomes Neto, Maurício W. B. Silva","doi":"10.1590/2179-10742023v22i1268430","DOIUrl":null,"url":null,"abstract":"− Frequency Selective Surfaces (FSS) are increasingly being used in telecommunications systems due to the numerous advantages presented by this sort of structure, among them low cost, ease of fabrication, and low profile stand out. This work reports the design, fabrication, and characterization of a multilayer frequency-selective absorber (FSA) for broadband operation. The proposed structure shows an absorption performance (operating in the frequency range between 2 GHz and 6 GHz) within the transmission band. The absorber consists of cascaded frequency selective surfaces, which are composed of both conductive square loops, which reflect incident signals, and resistive ones, which act as an absorbing layer. To verify the absorbing structure performance, full-wave numerical simulations and measurements are presented. The measured results are in good agreement with the numerical ones and show that the design performs absorption above 80% within the range of 2.48 GHz to 6.13 GHz, which verifies the project properties. Besides that, numerical results show that the proposed absorber has a proper response under oblique incidence up to 30 ◦ .","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742023v22i1268430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
− Frequency Selective Surfaces (FSS) are increasingly being used in telecommunications systems due to the numerous advantages presented by this sort of structure, among them low cost, ease of fabrication, and low profile stand out. This work reports the design, fabrication, and characterization of a multilayer frequency-selective absorber (FSA) for broadband operation. The proposed structure shows an absorption performance (operating in the frequency range between 2 GHz and 6 GHz) within the transmission band. The absorber consists of cascaded frequency selective surfaces, which are composed of both conductive square loops, which reflect incident signals, and resistive ones, which act as an absorbing layer. To verify the absorbing structure performance, full-wave numerical simulations and measurements are presented. The measured results are in good agreement with the numerical ones and show that the design performs absorption above 80% within the range of 2.48 GHz to 6.13 GHz, which verifies the project properties. Besides that, numerical results show that the proposed absorber has a proper response under oblique incidence up to 30 ◦ .
期刊介绍:
The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.