{"title":"Products of manifolds with fibered corners","authors":"Chris Kottke, Frédéric Rochon","doi":"10.1007/s10455-023-09912-1","DOIUrl":null,"url":null,"abstract":"<div><p>Manifolds with fibered corners arise as resolutions of stratified spaces, as ‘many-body’ compactifications of vector spaces, and as compactifications of certain moduli spaces including those of non-abelian Yang–Mills–Higgs monopoles, among other settings. However, Cartesian products of manifolds with fibered corners do not generally have fibered corners themselves and thus fail to reflect the appropriate structure of products of the underlying spaces in the above settings. Here, we determine a resolution of the Cartesian product of fibered corners manifolds by blow-up which we call the ‘ordered product,’ which leads to a well-behaved category of fibered corners manifolds in which the ordered product satisfies the appropriate universal property. In contrast to the usual category of manifolds with corners, this category of fibered corners not only has all finite products, but all finite transverse fiber products as well, and we show in addition that the ordered product is a natural product for wedge (aka incomplete edge) metrics and quasi-fibered boundary metrics, a class which includes QAC and QALE metrics.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09912-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Manifolds with fibered corners arise as resolutions of stratified spaces, as ‘many-body’ compactifications of vector spaces, and as compactifications of certain moduli spaces including those of non-abelian Yang–Mills–Higgs monopoles, among other settings. However, Cartesian products of manifolds with fibered corners do not generally have fibered corners themselves and thus fail to reflect the appropriate structure of products of the underlying spaces in the above settings. Here, we determine a resolution of the Cartesian product of fibered corners manifolds by blow-up which we call the ‘ordered product,’ which leads to a well-behaved category of fibered corners manifolds in which the ordered product satisfies the appropriate universal property. In contrast to the usual category of manifolds with corners, this category of fibered corners not only has all finite products, but all finite transverse fiber products as well, and we show in addition that the ordered product is a natural product for wedge (aka incomplete edge) metrics and quasi-fibered boundary metrics, a class which includes QAC and QALE metrics.