Characterization of approximately monotone and approximately Hölder functions

IF 0.9 4区 数学 Q2 MATHEMATICS
A. Goswami, Zsolt P'ales
{"title":"Characterization of approximately monotone and approximately Hölder functions","authors":"A. Goswami, Zsolt P'ales","doi":"10.7153/MIA-2021-24-18","DOIUrl":null,"url":null,"abstract":"A real valued function $f$ defined on a real open interval $I$ is called $\\Phi$-monotone if, for all $x,y\\in I$ with $x\\leq y$ it satisfies $$ \nf(x)\\leq f(y)+\\Phi(y-x), $$ where $\\Phi:[0,\\ell(I)[\\,\\to\\mathbb{R}_+$ is a given nonnegative error function, where $\\ell(I)$ denotes the length of the interval $I$. If $f$ and $-f$ are simultaneously $\\Phi$-monotone, then $f$ is said to be a $\\Phi$-Holder function. In the main results of the paper, using the notions of upper and lower interpolations, we establish a characterization for both classes of functions. This allows one to construct $\\Phi$-monotone and $\\Phi$-Holder functions from elementary ones, which could be termed the building blocks for those classes. In the second part, we deduce Ostrowski- and Hermite--Hadamard-type inequalities from the $\\Phi$-monotonicity and $\\Phi$-Holder properties, and then we verify the sharpness of these implications. We also establish implications in the reversed direction.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-18","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

A real valued function $f$ defined on a real open interval $I$ is called $\Phi$-monotone if, for all $x,y\in I$ with $x\leq y$ it satisfies $$ f(x)\leq f(y)+\Phi(y-x), $$ where $\Phi:[0,\ell(I)[\,\to\mathbb{R}_+$ is a given nonnegative error function, where $\ell(I)$ denotes the length of the interval $I$. If $f$ and $-f$ are simultaneously $\Phi$-monotone, then $f$ is said to be a $\Phi$-Holder function. In the main results of the paper, using the notions of upper and lower interpolations, we establish a characterization for both classes of functions. This allows one to construct $\Phi$-monotone and $\Phi$-Holder functions from elementary ones, which could be termed the building blocks for those classes. In the second part, we deduce Ostrowski- and Hermite--Hadamard-type inequalities from the $\Phi$-monotonicity and $\Phi$-Holder properties, and then we verify the sharpness of these implications. We also establish implications in the reversed direction.
近似单调和近似Hölder函数的刻画
定义在实开区间$I$上的实值函数$f$被称为$\Phi$-单调的,如果对于具有$x\leqy$的I$中的所有$x,y\,它满足$$f(x)\leqf(y)+\Phi(y-x),$$,其中$\Phi:[0,\ell(I)[\,\to\mathbb{R}_+$是一个给定的非负误差函数,其中$\ell(I)$表示区间$I$的长度。如果$f$和$-f$同时是$\Phi$-单调的,那么$f$被称为$\Phi$-Holder函数。在本文的主要结果中,使用上插值和下插值的概念,我们建立了这两类函数的特征。这允许从初等函数构造$\Phi$-单调函数和$\Phi$-Holder函数,它们可以被称为这些类的构建块。在第二部分中,我们从$\Phi$-单调性和$\Phi$-Holder性质推导了Ostrowski和Hermite-Hadamard型不等式,然后我们验证了这些含义的尖锐性。我们还确定了相反方向的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信