{"title":"Size-dependent vibrations and waves in piezoelectric nanostructures: a literature review","authors":"Zinan Zhao, Jun Zhu, Wei-qiu Chen","doi":"10.1080/19475411.2022.2091058","DOIUrl":null,"url":null,"abstract":"ABSTRACT With the development and applications of nano-electro-mechanical systems, academic interest in the mechanical behavior of piezoelectric structures at nanoscale is increasing. Interesting unconventional phenomena have been observed either experimentally or through molecular dynamics simulation. The most common and also important one is the size-dependent characteristics. Classical continuum mechanics with necessary modifications has been proven to be very powerful in explaining these particular characteristics in a relatively simple theoretical framework. This article reviews the recent advances in understanding the size-dependent dynamic responses of piezoelectric nanostructures from the viewpoint of modified continuum mechanics. Particular attentions are paid to three advanced theories of piezoelectricity (e.g. gradient piezoelectricity, surface piezoelectricity, and nonlocal piezoelectricity) and their abilities to predict unconventional vibration and wave characteristics in piezoelectric structures and devices at the nanoscale. The article could serve as a useful reference for the future research on or design of nanostructures with multifield couplings. Graphical Abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"13 1","pages":"391 - 431"},"PeriodicalIF":4.5000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2022.2091058","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14
Abstract
ABSTRACT With the development and applications of nano-electro-mechanical systems, academic interest in the mechanical behavior of piezoelectric structures at nanoscale is increasing. Interesting unconventional phenomena have been observed either experimentally or through molecular dynamics simulation. The most common and also important one is the size-dependent characteristics. Classical continuum mechanics with necessary modifications has been proven to be very powerful in explaining these particular characteristics in a relatively simple theoretical framework. This article reviews the recent advances in understanding the size-dependent dynamic responses of piezoelectric nanostructures from the viewpoint of modified continuum mechanics. Particular attentions are paid to three advanced theories of piezoelectricity (e.g. gradient piezoelectricity, surface piezoelectricity, and nonlocal piezoelectricity) and their abilities to predict unconventional vibration and wave characteristics in piezoelectric structures and devices at the nanoscale. The article could serve as a useful reference for the future research on or design of nanostructures with multifield couplings. Graphical Abstract
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.