{"title":"Adaptive Order-Switching Kalman Filter for Orbit Determination Using Deep-Neural-Network-Based Nonlinearity Detection","authors":"Xingyu Zhou, D. Qiao, Xiangyu Li","doi":"10.2514/1.a35639","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive estimation algorithm for orbit determination, which consists of a deep-neural-network (DNN)-based nonlinearity detector combined with an adaptive order-switching procedure, to reduce the computational complexity while still maintaining the estimation accuracy. The DNN is trained to quickly evaluate the nonlinearity degree of the state equation. An adaptive order-switching strategy is designed based on the nonlinearity degree predicted by the DNN. The algorithm switches to a high-order method when the nonlinearity of the state equation is significant and uses a linear method when the nonlinearity degree is low. The proposed method is applied to estimate the orbit of a spacecraft in cislunar space. The sample forms in the inertial frame and rotating frame are investigated and compared to find the optimum one to train the DNN. Simulations show that the proposed method can deliver accurate state estimations comparable with the state estimations obtained by the second-order extended Kalman filter but with only half of the computational cost.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35639","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an adaptive estimation algorithm for orbit determination, which consists of a deep-neural-network (DNN)-based nonlinearity detector combined with an adaptive order-switching procedure, to reduce the computational complexity while still maintaining the estimation accuracy. The DNN is trained to quickly evaluate the nonlinearity degree of the state equation. An adaptive order-switching strategy is designed based on the nonlinearity degree predicted by the DNN. The algorithm switches to a high-order method when the nonlinearity of the state equation is significant and uses a linear method when the nonlinearity degree is low. The proposed method is applied to estimate the orbit of a spacecraft in cislunar space. The sample forms in the inertial frame and rotating frame are investigated and compared to find the optimum one to train the DNN. Simulations show that the proposed method can deliver accurate state estimations comparable with the state estimations obtained by the second-order extended Kalman filter but with only half of the computational cost.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.