{"title":"An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional equation","authors":"Ulviye Demirbileko, V. Ala, K. Mamedov","doi":"10.32513/tmj/19322008142","DOIUrl":null,"url":null,"abstract":"The nonlinear conformable time-fractional modified Camassa-Holm (MCH) equation plays an important role in physics. It is an interesting model to define change waves with weak nonlinearity. The aim of this study is to present the new exact solutions of conformable time-fractional MCH equation. For this purpose, an effective method which is the Improved Bernoulli Sub-Equation Function Method (IBSEFM) has been used. The 2D and 3D graphs and contour surfaces acquired from the values of the solutions are plotted by the aid of mathematics software. The obtained results confirm that IBSEFM is a powerful mathematical tool to solve nonlinear conformable time-fractional partial differential equations arising in mathematical physics.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
The nonlinear conformable time-fractional modified Camassa-Holm (MCH) equation plays an important role in physics. It is an interesting model to define change waves with weak nonlinearity. The aim of this study is to present the new exact solutions of conformable time-fractional MCH equation. For this purpose, an effective method which is the Improved Bernoulli Sub-Equation Function Method (IBSEFM) has been used. The 2D and 3D graphs and contour surfaces acquired from the values of the solutions are plotted by the aid of mathematics software. The obtained results confirm that IBSEFM is a powerful mathematical tool to solve nonlinear conformable time-fractional partial differential equations arising in mathematical physics.