A. Bednarz, Krzysztof Bieniek, Radosław Kołodziejczyk, Z. Szczerba, Piotr Krauz, Monika Lubas, Kamil Szczerba
{"title":"Experimental Interpretation of the Provisions of EN 13796-3 for Fatigue Testing of Cableway Gondolas","authors":"A. Bednarz, Krzysztof Bieniek, Radosław Kołodziejczyk, Z. Szczerba, Piotr Krauz, Monika Lubas, Kamil Szczerba","doi":"10.3390/asi6020044","DOIUrl":null,"url":null,"abstract":"This article presents an experimental approach to fatigue testing of cableway gondolas, carried out in accordance with the EN 13796-3 standard. Due to the limitations of the aforementioned regulations and the lack of clarity in their content, when designing and conducting fatigue tests of gondolas, there is a need to find solutions that meet the normative requirements, while ensuring the cost-effectiveness of the tests. The work presents the method of loading, receiving the degrees of freedom, the methodology of gondola strength verification and additional suggestions allowing for the satisfactory preparation of a plan of fatigue tests and their implementation. The paper shows problems and ways to solve it, what may occur during cableway gondolas fatigue test design. In addition, the work contains an extensive description and methodology for conducting research verifying the elastic and permanent deformation of the structure, using digital image correlation (DIC). The results obtained by using this method make it possible to unambiguously determine the degree of structure deformation while maintaining high accuracy and repeatability of measurements at many points of the structure. Following the presented tests, it was possible to correctly carry out fatigue tests of the nacelle in a satisfactory time (about 8 weeks), perform 5 million load cycles and verify the integrity of the structure. The presented results show the effectiveness of the adopted design assumptions and indicate the process that guarantees the correctness of the conducted fatigue tests. The prepared study may be the basis for further full-scale fatigue tests. The research object is a 6-seater gondola designed by TRANSSYSTEM S.A.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi6020044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an experimental approach to fatigue testing of cableway gondolas, carried out in accordance with the EN 13796-3 standard. Due to the limitations of the aforementioned regulations and the lack of clarity in their content, when designing and conducting fatigue tests of gondolas, there is a need to find solutions that meet the normative requirements, while ensuring the cost-effectiveness of the tests. The work presents the method of loading, receiving the degrees of freedom, the methodology of gondola strength verification and additional suggestions allowing for the satisfactory preparation of a plan of fatigue tests and their implementation. The paper shows problems and ways to solve it, what may occur during cableway gondolas fatigue test design. In addition, the work contains an extensive description and methodology for conducting research verifying the elastic and permanent deformation of the structure, using digital image correlation (DIC). The results obtained by using this method make it possible to unambiguously determine the degree of structure deformation while maintaining high accuracy and repeatability of measurements at many points of the structure. Following the presented tests, it was possible to correctly carry out fatigue tests of the nacelle in a satisfactory time (about 8 weeks), perform 5 million load cycles and verify the integrity of the structure. The presented results show the effectiveness of the adopted design assumptions and indicate the process that guarantees the correctness of the conducted fatigue tests. The prepared study may be the basis for further full-scale fatigue tests. The research object is a 6-seater gondola designed by TRANSSYSTEM S.A.