Balance of Efficiency and Security-influence on Slurry Transport from the Diffusion of Flow Passages of a Deep-sea Mining Pump

IF 1.1 4区 工程技术 Q4 MECHANICS
Z. Zhu, Y. Lv, X. Su, J. Zhang, R. Wang, W. Lu, J. Sun
{"title":"Balance of Efficiency and Security-influence on Slurry Transport from the Diffusion of Flow Passages of a Deep-sea Mining Pump","authors":"Z. Zhu, Y. Lv, X. Su, J. Zhang, R. Wang, W. Lu, J. Sun","doi":"10.47176/jafm.16.08.1736","DOIUrl":null,"url":null,"abstract":"Slurry transport pumps, the central equipment of deep-sea mining (DSM) systems, provide the lifting power required for lifting mineral ores from the seafloor to the surface. The current technical challenges are associated with transport security and the economic aspects of coarse ore particles in pumps and pipelines. This paper focuses on the transportation characteristics of slurry pumps and uses theoretical methods, numerical calculations, and experimental methods to identify a feasible working mode. The geometric parameters of impeller channels in pump hydraulics significantly influence the migration properties of particles which in turn affects the overall security and economy of the system. The ratio of the impeller cross-sectional area F2/F1 (F1: cross-sectional area of the impeller outlet; F2: cross-sectional area of the impeller inlet) affects the particle passing capacity but negatively impacts pump efficiency. The percent of particles in the excellent passage interval of 0.2 s to 0.25 s increases from 25 to 43% when the number increases from 1.57 to 2.51. The pump behavior increases of the head by 5–10 m, and the efficiency decreases by 5–10%. So, the recommended span of F2/F1 is 1.57–2.00, and satisfying particle passing ability and efficiency can be achieved in this range. This study can provide a reference for the commercial transportation of slurry ores for deep-sea mining systems.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.08.1736","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Slurry transport pumps, the central equipment of deep-sea mining (DSM) systems, provide the lifting power required for lifting mineral ores from the seafloor to the surface. The current technical challenges are associated with transport security and the economic aspects of coarse ore particles in pumps and pipelines. This paper focuses on the transportation characteristics of slurry pumps and uses theoretical methods, numerical calculations, and experimental methods to identify a feasible working mode. The geometric parameters of impeller channels in pump hydraulics significantly influence the migration properties of particles which in turn affects the overall security and economy of the system. The ratio of the impeller cross-sectional area F2/F1 (F1: cross-sectional area of the impeller outlet; F2: cross-sectional area of the impeller inlet) affects the particle passing capacity but negatively impacts pump efficiency. The percent of particles in the excellent passage interval of 0.2 s to 0.25 s increases from 25 to 43% when the number increases from 1.57 to 2.51. The pump behavior increases of the head by 5–10 m, and the efficiency decreases by 5–10%. So, the recommended span of F2/F1 is 1.57–2.00, and satisfying particle passing ability and efficiency can be achieved in this range. This study can provide a reference for the commercial transportation of slurry ores for deep-sea mining systems.
深海采矿泵流道扩散对泥浆输送效率和安全影响的平衡
泥浆输送泵是深海采矿(DSM)系统的中心设备,提供将矿石从海底提升到地表所需的提升动力。目前的技术挑战与泵和管道中粗矿颗粒的运输安全和经济方面有关。本文重点研究了泥浆泵的输送特性,并利用理论方法、数值计算和实验方法确定了一种可行的工作模式。泵水力学中叶轮通道的几何参数显著影响颗粒的迁移特性,进而影响系统的整体安全性和经济性。叶轮横截面积F2/F1之比(F1:叶轮出口的横截面积;F2:叶轮入口的横截面面积)影响颗粒通过能力,但对泵效率产生负面影响。当数量从1.57增加到2.51时,在0.2秒到0.25秒的良好通过间隔中的颗粒百分比从25%增加到43%。泵的扬程增加了5–10 m,效率降低了5–10%。因此,建议F2/F1的跨度为1.57–2.00,在这个范围内可以达到令人满意的颗粒通过能力和效率。本研究可为深海采矿系统矿浆的商业运输提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信