José Lucas Martins Melo, J. P. Andrade Feitosa, J. C. A. Mota, Carlos Tadeu dos Santos Dias, C. F. de Lacerda, R. Simmons, M. Costa
{"title":"Can a superabsorbent polymer synthesised a CaCO3 based biofiller improve soil and plant available water and crop growth under salt stress?","authors":"José Lucas Martins Melo, J. P. Andrade Feitosa, J. C. A. Mota, Carlos Tadeu dos Santos Dias, C. F. de Lacerda, R. Simmons, M. Costa","doi":"10.1080/03650340.2023.2237899","DOIUrl":null,"url":null,"abstract":"ABSTRACT The use of superabsorbent polymers (SAPs) in dryland agricultural areas utilizing brackish irrigation water is a strategy to increase plant available water (AW). However, water retention by SAPs may be adversely affected under salinity. SAP containing calcium carbonate (Ca-SAP) is considered to be more resistant and provide more plant AW under saline conditions compared to conventional SAP (C-SAP) and to control. This research investigated two replicated lettuce trials to evaluate three treatments (Ca-SAP, C-SAP and control) subjected to irrigation water with electrical conductivities of 0.0, 0.5, 1.0, 2.0 and 4.0 dS m−1. Both SAP treatments increased AW by an average of 0.16 m3 m−3 as compared to the control. Decrease in AW with salinity was lower in Ca-SAP (0.07 m3 m−3) as compared with C-SAP (0.13 m3 m−3). Lettuce fresh weight (g plant−1) was higher for Ca-SAP (22.9) as compared to C-SAP (16.4), however, did not differ from control (20.6). As water salinity increased, lettuce fresh biomass was higher in Ca-SAP as compared to C-SAP up to 2 dS m−1 with no significant differences from control. The Ca-SAP is less affected by salts than the C-SAP, although its use did not benefit lettuce growth under saline conditions as expected.","PeriodicalId":8154,"journal":{"name":"Archives of Agronomy and Soil Science","volume":"69 1","pages":"3375 - 3387"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Agronomy and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2237899","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The use of superabsorbent polymers (SAPs) in dryland agricultural areas utilizing brackish irrigation water is a strategy to increase plant available water (AW). However, water retention by SAPs may be adversely affected under salinity. SAP containing calcium carbonate (Ca-SAP) is considered to be more resistant and provide more plant AW under saline conditions compared to conventional SAP (C-SAP) and to control. This research investigated two replicated lettuce trials to evaluate three treatments (Ca-SAP, C-SAP and control) subjected to irrigation water with electrical conductivities of 0.0, 0.5, 1.0, 2.0 and 4.0 dS m−1. Both SAP treatments increased AW by an average of 0.16 m3 m−3 as compared to the control. Decrease in AW with salinity was lower in Ca-SAP (0.07 m3 m−3) as compared with C-SAP (0.13 m3 m−3). Lettuce fresh weight (g plant−1) was higher for Ca-SAP (22.9) as compared to C-SAP (16.4), however, did not differ from control (20.6). As water salinity increased, lettuce fresh biomass was higher in Ca-SAP as compared to C-SAP up to 2 dS m−1 with no significant differences from control. The Ca-SAP is less affected by salts than the C-SAP, although its use did not benefit lettuce growth under saline conditions as expected.
期刊介绍:
rchives of Agronomy and Soil Science is a well-established journal that has been in publication for over fifty years. The Journal publishes papers over the entire range of agronomy and soil science. Manuscripts involved in developing and testing hypotheses to understand casual relationships in the following areas:
plant nutrition
fertilizers
manure
soil tillage
soil biotechnology and ecophysiology
amelioration
irrigation and drainage
plant production on arable and grass land
agroclimatology
landscape formation and environmental management in rural regions
management of natural and created wetland ecosystems
bio-geochemical processes
soil-plant-microbe interactions and rhizosphere processes
soil morphology, classification, monitoring, heterogeneity and scales
reuse of waste waters and biosolids of agri-industrial origin in soil are especially encouraged.
As well as original contributions, the Journal also publishes current reviews.