{"title":"The orbit method and analysis of automorphic forms","authors":"Paul D. Nelson, Akshay Venkatesh","doi":"10.4310/ACTA.2021.v226.n1.a1","DOIUrl":null,"url":null,"abstract":"We develop the orbit method in a quantitative form, along the lines of microlocal analysis, and apply it to the analytic theory of automorphic forms. \nOur main global application is an asymptotic formula for averages of Gan--Gross--Prasad periods in arbitrary rank. The automorphic form on the larger group is held fixed, while that on the smaller group varies over a family of size roughly the fourth root of the conductors of the corresponding $L$-functions. Ratner's results on measure classification provide an important input to the proof. \nOur local results include asymptotic expansions for certain special functions arising from representations of higher rank Lie groups, such as the relative characters defined by matrix coefficient integrals as in the Ichino--Ikeda conjecture.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2021.v226.n1.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 20
Abstract
We develop the orbit method in a quantitative form, along the lines of microlocal analysis, and apply it to the analytic theory of automorphic forms.
Our main global application is an asymptotic formula for averages of Gan--Gross--Prasad periods in arbitrary rank. The automorphic form on the larger group is held fixed, while that on the smaller group varies over a family of size roughly the fourth root of the conductors of the corresponding $L$-functions. Ratner's results on measure classification provide an important input to the proof.
Our local results include asymptotic expansions for certain special functions arising from representations of higher rank Lie groups, such as the relative characters defined by matrix coefficient integrals as in the Ichino--Ikeda conjecture.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.