Jonas Baillien, Irène Gijbels, Anneleen Verhasselt
{"title":"Flexible asymmetric multivariate distributions based on two-piece univariate distributions","authors":"Jonas Baillien, Irène Gijbels, Anneleen Verhasselt","doi":"10.1007/s10463-022-00842-6","DOIUrl":null,"url":null,"abstract":"<div><p>Classical symmetric distributions like the Gaussian are widely used. However, in reality data often display a lack of symmetry. Multiple distributions, grouped under the name “skewed distributions”, have been developed to specifically cope with asymmetric data. In this paper, we present a broad family of flexible multivariate skewed distributions for which statistical inference is a feasible task. The studied family of multivariate skewed distributions is derived by taking affine combinations of independent univariate distributions. These are members of a flexible family of univariate asymmetric distributions and are an important basis for achieving statistical inference. Besides basic properties of the proposed distributions, also statistical inference based on a maximum likelihood approach is presented. We show that under mild conditions, weak consistency and asymptotic normality of the maximum likelihood estimators hold. These results are supported by a simulation study confirming the developed theoretical results, and some data examples to illustrate practical applicability.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00842-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Classical symmetric distributions like the Gaussian are widely used. However, in reality data often display a lack of symmetry. Multiple distributions, grouped under the name “skewed distributions”, have been developed to specifically cope with asymmetric data. In this paper, we present a broad family of flexible multivariate skewed distributions for which statistical inference is a feasible task. The studied family of multivariate skewed distributions is derived by taking affine combinations of independent univariate distributions. These are members of a flexible family of univariate asymmetric distributions and are an important basis for achieving statistical inference. Besides basic properties of the proposed distributions, also statistical inference based on a maximum likelihood approach is presented. We show that under mild conditions, weak consistency and asymptotic normality of the maximum likelihood estimators hold. These results are supported by a simulation study confirming the developed theoretical results, and some data examples to illustrate practical applicability.