(M,K)-QUASI CLASS Q AND (M,K)-QUASI *CLASS Q COMPOSITION OPERATORS ON WEIGHTED HARDY SPACE

A. Devika, G. Suresh
{"title":"(M,K)-QUASI CLASS Q AND (M,K)-QUASI *CLASS Q COMPOSITION OPERATORS ON WEIGHTED HARDY SPACE","authors":"A. Devika, G. Suresh","doi":"10.12732/CAA.V21I1.1","DOIUrl":null,"url":null,"abstract":"Various properties of composition operators on weighted Hardy spaces have been studied by different authors [3] Cowen and Kriete obtained a nice correlation between hyponormality of composition operator on H2. [9] E.A. Nordgeen, studied some results on the hyponormality of composition operators and their adjoints. [13] S. Panayappan D.Senthil kumar and Mohenraj have investigated on M-Quasihyponormality of composition operators and their adjoints. [15] T. Veluchamy have investigated parahyponormal * paranormal and posinormal operators.","PeriodicalId":92887,"journal":{"name":"Communications in applied analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in applied analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/CAA.V21I1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various properties of composition operators on weighted Hardy spaces have been studied by different authors [3] Cowen and Kriete obtained a nice correlation between hyponormality of composition operator on H2. [9] E.A. Nordgeen, studied some results on the hyponormality of composition operators and their adjoints. [13] S. Panayappan D.Senthil kumar and Mohenraj have investigated on M-Quasihyponormality of composition operators and their adjoints. [15] T. Veluchamy have investigated parahyponormal * paranormal and posinormal operators.
加权HARDY空间上的(M,K)-拟类Q和(M,K)-拟*Q类复合算子
不同的作者研究了加权Hardy空间上复合算子的各种性质[3]Cowen和Kriete得到了H2上复合算子亚正态性之间的良好相关性。[9] E.A.Nordgeen研究了关于复合算子及其邻接的次正规性的一些结果。[13] S.Panayappan D.Senthil kumar和Mohenraj研究了复合算子及其邻接的M-拟次正规性。[15] T.Veluchamy研究了异常、异常和正态算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信