Compact connected components in relative character varieties of punctured spheres

Pub Date : 2018-11-05 DOI:10.46298/epiga.2021.volume5.5894
Nicolas Tholozan, J'er'emy Toulisse
{"title":"Compact connected components in relative character varieties of\n punctured spheres","authors":"Nicolas Tholozan, J'er'emy Toulisse","doi":"10.46298/epiga.2021.volume5.5894","DOIUrl":null,"url":null,"abstract":"We prove that some relative character varieties of the fundamental group of a\npunctured sphere into the Hermitian Lie groups $\\mathrm{SU}(p,q)$ admit compact\nconnected components. The representations in these components have several\ncounter-intuitive properties. For instance, the image of any simple closed\ncurve is an elliptic element. These results extend a recent work of Deroin and\nthe first author, which treated the case of $\\textrm{PU}(1,1) =\n\\mathrm{PSL}(2,\\mathbb{R})$. Our proof relies on the non-Abelian Hodge\ncorrespondance between relative character varieties and parabolic Higgs\nbundles. The examples we construct admit a rather explicit description as\nprojective varieties obtained via Geometric Invariant Theory.\n","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.volume5.5894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We prove that some relative character varieties of the fundamental group of a punctured sphere into the Hermitian Lie groups $\mathrm{SU}(p,q)$ admit compact connected components. The representations in these components have several counter-intuitive properties. For instance, the image of any simple closed curve is an elliptic element. These results extend a recent work of Deroin and the first author, which treated the case of $\textrm{PU}(1,1) = \mathrm{PSL}(2,\mathbb{R})$. Our proof relies on the non-Abelian Hodge correspondance between relative character varieties and parabolic Higgs bundles. The examples we construct admit a rather explicit description as projective varieties obtained via Geometric Invariant Theory.
分享
查看原文
穿孔球的相对特征变种中的紧密连接部件
我们证明了在Hermitian Lie群$\mathrm{SU}(p,q)$中一个补球面的基群的一些相对性质变种允许紧连通分量。这些组件中的表示具有几个更直观的特性。例如,任何简单闭合曲线的图像都是一个椭圆元素。这些结果扩展了Deroin和第一作者最近的一项工作,该工作处理了$\textrm{PU}(1,1)=\mathrm{PSL}(2,\mathbb{R})$的情况。我们的证明依赖于相对特征变体和抛物型Higgsbundles之间的非阿贝尔Hodgecorrespondence。我们构造的例子允许对通过几何不变量理论获得的投影变体进行相当明确的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信