M. Arockiaraj, Shagufa Mushtaq, S. Klavžar, J. C. Fiona, K. Balasubramanian
{"title":"Szeged-Like Topological Indices and the Efficacy of the Cut Method: The Case of Melem Structures","authors":"M. Arockiaraj, Shagufa Mushtaq, S. Klavžar, J. C. Fiona, K. Balasubramanian","doi":"10.47443/dml.2021.s209","DOIUrl":null,"url":null,"abstract":"The Szeged index is a bond-additive topological descriptor that quantifies each bond’s terminal atoms based on their closeness sets which is measured by multiplying the number of atoms in the closeness sets. Based on the high correlation between the Szeged index and physico-chemical properties of chemical compounds, Szeged-like indices have been proposed by considering closeness sets with bond counts and other mathematical operations like addition and subtraction. As there are many ways to compute the Szeged-like indices, the cut method is predominantly used due to its complexity compared to other approaches based on algorithms and interpolations. Yet, we here analyze the usefulness of the cut method in the case of melem structures and find that it is less effective when the size and shape of the cavities change in the structures.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.s209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
The Szeged index is a bond-additive topological descriptor that quantifies each bond’s terminal atoms based on their closeness sets which is measured by multiplying the number of atoms in the closeness sets. Based on the high correlation between the Szeged index and physico-chemical properties of chemical compounds, Szeged-like indices have been proposed by considering closeness sets with bond counts and other mathematical operations like addition and subtraction. As there are many ways to compute the Szeged-like indices, the cut method is predominantly used due to its complexity compared to other approaches based on algorithms and interpolations. Yet, we here analyze the usefulness of the cut method in the case of melem structures and find that it is less effective when the size and shape of the cavities change in the structures.