{"title":"Reflections on statistical modelling: A conversation with Murray Aitkin","authors":"M. Aitkin, J. Hinde, Brian Francis","doi":"10.1177/1471082X211060560","DOIUrl":null,"url":null,"abstract":"A virtual interview with Murray Aitkin by Brian Francis and John Hinde, two of the original members of the Centre for Applied Statistics that Murray created at Lancaster University. The talk ranges over Murray's reflections of a career in statistical modelling and the many different collaborations across the world that have been such a significant part of it.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"22 1","pages":"13 - 32"},"PeriodicalIF":1.2000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X211060560","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
A virtual interview with Murray Aitkin by Brian Francis and John Hinde, two of the original members of the Centre for Applied Statistics that Murray created at Lancaster University. The talk ranges over Murray's reflections of a career in statistical modelling and the many different collaborations across the world that have been such a significant part of it.
期刊介绍:
The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.