Generalized double Lindley distribution: A new model for weather and financial data

IF 0.3 Q4 STATISTICS & PROBABILITY
C. Satheesh Kumar, Rosmi Jose
{"title":"Generalized double Lindley distribution: A new model for weather and financial data","authors":"C. Satheesh Kumar, Rosmi Jose","doi":"10.1515/rose-2023-2015","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce a generalization of the two-parameter double Lindley distribution (TPDLD) of Kumar and Jose [C. S. Kumar and R. Jose, A new generalization to Laplace distribution, J. Math. Comput. 31 2020, 8–32], namely the generalized double Lindley distribution (GDLD) along with its location-scale extension (EGDLD). Then we discuss the estimation of parameters of the EGDLD by the maximum likelihood estimation procedure. Next, we illustrate this estimation procedure with the help of certain real life data sets, and a simulation study is carried out to examine the performance of various estimators of the parameters of the distribution.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we introduce a generalization of the two-parameter double Lindley distribution (TPDLD) of Kumar and Jose [C. S. Kumar and R. Jose, A new generalization to Laplace distribution, J. Math. Comput. 31 2020, 8–32], namely the generalized double Lindley distribution (GDLD) along with its location-scale extension (EGDLD). Then we discuss the estimation of parameters of the EGDLD by the maximum likelihood estimation procedure. Next, we illustrate this estimation procedure with the help of certain real life data sets, and a simulation study is carried out to examine the performance of various estimators of the parameters of the distribution.
广义双林德利分布:天气和金融数据的新模型
摘要在本文中,我们介绍了Kumar和Jose的双参数二重Lindley分布(TPDLD)的一个推广[C.S.Kumar和R.Jose,拉普拉斯分布的一个新推广,J.Math.Comput.31/2020,8–32],即广义二重Lindley布局(GDLD)及其位置-尺度扩展(EGDLD)。然后,我们讨论了通过最大似然估计过程来估计EGDLD的参数。接下来,我们借助于某些真实生活数据集来说明这种估计过程,并进行了模拟研究,以检验分布参数的各种估计量的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信