Discrete Gagliardo–Nirenberg inequality and application to the finite volume approximation of a convection–diffusion equation with a Joule effect term

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
C. Calgaro, C. Cancès, E. Creusé
{"title":"Discrete Gagliardo–Nirenberg inequality and application to the finite volume approximation of a convection–diffusion equation with a Joule effect term","authors":"C. Calgaro, C. Cancès, E. Creusé","doi":"10.1093/imanum/drad063","DOIUrl":null,"url":null,"abstract":"A discrete order-two Gagliardo–Nirenberg inequality is established for piecewise constant functions defined on a two-dimensional structured mesh composed of rectangular cells. As in the continuous framework, this discrete Gagliardo–Nirenberg inequality allows to control in particular the $L^4$ norm of the discrete gradient of the numerical solution by the $L^2$ norm of its discrete Hessian times its $L^\\infty $ norm. This result is crucial for the convergence analysis of a finite volume method for the approximation of a convection–diffusion equation involving a Joule effect term on a uniform mesh in each direction. The convergence proof relies on compactness arguments and on a priori estimates under a smallness assumption on the data, which is essential also in the continuous framework.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A discrete order-two Gagliardo–Nirenberg inequality is established for piecewise constant functions defined on a two-dimensional structured mesh composed of rectangular cells. As in the continuous framework, this discrete Gagliardo–Nirenberg inequality allows to control in particular the $L^4$ norm of the discrete gradient of the numerical solution by the $L^2$ norm of its discrete Hessian times its $L^\infty $ norm. This result is crucial for the convergence analysis of a finite volume method for the approximation of a convection–diffusion equation involving a Joule effect term on a uniform mesh in each direction. The convergence proof relies on compactness arguments and on a priori estimates under a smallness assumption on the data, which is essential also in the continuous framework.
离散gagliado - nirenberg不等式及其在具有焦耳效应项的对流扩散方程有限体积近似中的应用
对于定义在矩形单元组成的二维结构网格上的分段常数函数,建立了离散二阶Gagliardo-Nirenberg不等式。就像在连续框架中一样,这个离散的伽利亚多-尼伦伯格不等式允许通过其离散的海森的$L^2$范数乘以其$L^\infty $范数来控制数值解的离散梯度的$L^4$范数。这一结果对于用有限体积法逼近每个方向均匀网格上包含焦耳效应项的对流扩散方程的收敛性分析是至关重要的。收敛性证明依赖于紧性参数和数据在小假设下的先验估计,这在连续框架中也是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信