Robin R. Benedix, Hailey Poole, D. Zauser, Natalie Preisig, P. Jessop, C. Stubenrauch
{"title":"Surface and foaming properties of an anionic CO2-switchable tail surfactant","authors":"Robin R. Benedix, Hailey Poole, D. Zauser, Natalie Preisig, P. Jessop, C. Stubenrauch","doi":"10.1515/tsd-2023-2524","DOIUrl":null,"url":null,"abstract":"Abstract CO2-switchable materials in general and CO2-switchable surfactants in particular are of great interest in environmental research. There is a great potential to make processes more environmentally friendly by enhancing reusability and circularity and thus reducing material costs and energy consumption by replacing common non-switchable surfactants with their switchable counterparts. Inspired by this, the present work deals with the surface and foaming properties of aqueous solutions of the novel anionic CO2-switchable tail surfactant sodium 4-(methyl(octyl)amino)butane-1-sulfonate. In the presence of N2, the unprotonated surfactant is able to stabilize foams. By switching, i.e. by protonating the CO2-responsive trialkyl amine group in the surfactants hydrocarbon chain, the amphiphilic nature of the surfactant is reduced which is indicated by an increase of the plateau surface tension and a higher CMC compared to the non-protonated surfactant. Furthermore, the ability of the protonated surfactant to stabilize foams is reduced.","PeriodicalId":22258,"journal":{"name":"Tenside Surfactants Detergents","volume":"60 1","pages":"269 - 276"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenside Surfactants Detergents","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tsd-2023-2524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract CO2-switchable materials in general and CO2-switchable surfactants in particular are of great interest in environmental research. There is a great potential to make processes more environmentally friendly by enhancing reusability and circularity and thus reducing material costs and energy consumption by replacing common non-switchable surfactants with their switchable counterparts. Inspired by this, the present work deals with the surface and foaming properties of aqueous solutions of the novel anionic CO2-switchable tail surfactant sodium 4-(methyl(octyl)amino)butane-1-sulfonate. In the presence of N2, the unprotonated surfactant is able to stabilize foams. By switching, i.e. by protonating the CO2-responsive trialkyl amine group in the surfactants hydrocarbon chain, the amphiphilic nature of the surfactant is reduced which is indicated by an increase of the plateau surface tension and a higher CMC compared to the non-protonated surfactant. Furthermore, the ability of the protonated surfactant to stabilize foams is reduced.
期刊介绍:
Tenside Surfactants Detergents offers the most recent results of research and development in all fields of surfactant chemistry, such as: synthesis, analysis, physicochemical properties, new types of surfactants, progress in production processes, application-related problems and environmental behavior. Since 1964 Tenside Surfactants Detergents offers strictly peer-reviewed, high-quality articles by renowned specialists around the world.