Inferences for Extended Generalized Exponential Distribution based on Order Statistics

IF 0.1 Q4 STATISTICS & PROBABILITY
M. Abbasnejad
{"title":"Inferences for Extended Generalized Exponential Distribution based on Order Statistics","authors":"M. Abbasnejad","doi":"10.18869/ACADPUB.JIRSS.16.1.1004","DOIUrl":null,"url":null,"abstract":". Recently, a new distribution, named as extended generalized exponential distribution, has been introduced by Kundu and Gupta (2011). In this paper, we con-sider the extended generalized exponential distribution with known shape parameters (cid:11) and (cid:12) . At first, the exact expressions for marginal and product moments of order statistics are derived. Then, these values are used to obtain the necessary coe ffi cients for the best linear unbiased estimators and L-moments estimators of the location and scale parameters. The mean squared errors of these estimators are also given and com-pared.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"16 1","pages":"53-67"},"PeriodicalIF":0.1000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.JIRSS.16.1.1004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

. Recently, a new distribution, named as extended generalized exponential distribution, has been introduced by Kundu and Gupta (2011). In this paper, we con-sider the extended generalized exponential distribution with known shape parameters (cid:11) and (cid:12) . At first, the exact expressions for marginal and product moments of order statistics are derived. Then, these values are used to obtain the necessary coe ffi cients for the best linear unbiased estimators and L-moments estimators of the location and scale parameters. The mean squared errors of these estimators are also given and com-pared.
基于阶统计量的广义指数分布的推断
最近,Kundu和Gupta(2011)提出了一种新的分布,称为扩展广义指数分布。在本文中,我们考虑了具有已知形状参数(cid:11)和(cid:12)的扩展广义指数分布。首先,导出了阶统计量的边际矩和乘积矩的精确表达式。然后,使用这些值来获得位置和尺度参数的最佳线性无偏估计量和L矩估计量的必要系数。文中还给出并比较了这些估计量的均方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信